Browse > Article
http://dx.doi.org/10.5012/bkcs.2003.24.6.797

ONIOM and Its Applications to Material Chemistry and Catalyses  

Morokuma, Keiji (Cherry L. Emerson Center for Scientific Computation and Department of Chemistry,Emory University)
Publication Information
Abstract
One of the largest challenges for quantum chemistry today is to obtain accurate results for large complex molecular systems, and a variety of approaches have been proposed recently toward this goal. We have developed the ONIOM method, an onion skin-like multi-level method, combining different levels of quantum chemical methods as well as molecular mechanics method. We have been applying the method to many different large systems, including thermochemistry, homogeneous catalysis, stereoselectivity in organic synthesis, solution chemistry, fullerenes and nanochemistry, and biomolecular systems. The method has recently been combined with the polarizable continuum model (ONIOM-PCM), and was also extended for molecular dynamics simulation of solution (ONIOM-XS). In the present article the recent progress in various applications of ONIOM and other electronic structure methods to problems of homogeneous catalyses and nanochemistry is reviewed. Topics include 1. bond energies in large molecular systems, 2. organometallic reactions and homogeneous catalysis, 3. structure, reactivity and bond energies of large organic molecules including fullerenes and nanotubes, and 4. biomolecular structure and enzymatic reaction mechanisms.
Keywords
ONIOM; Hybrid method; Catalyses; Material chemistry;
Citations & Related Records

Times Cited By Web Of Science : 62  (Related Records In Web of Science)
Times Cited By SCOPUS : 59
연도 인용수 순위
1 Vreven, T.; Morokuma, K. J. Chem. Phys. 1999, 111, 8799.   DOI
2 Liu, Z.; Torrent, M.; Morokuma, K. Organometallics 2002, 21,1056.   DOI   ScienceOn
3 Khoroshun, D. V.; Musaev, D. G.; Vreven, T.; Morokuma, K.Organometallics 2001, 20, 2007.   DOI   ScienceOn
4 Torrent, M.; Vreven, T.; Musaev, D. G.; Morokuma, K.; Farkas,O.; Schlegel, H. B. J. Am. Chem. Soc. 2002, 124, 192.   DOI   ScienceOn
5 Ujaque, G.; Maseras, F.; Lledos, A. J. Am. Chem. Soc. 1999, 121, 1317.   DOI   ScienceOn
6 Feldgus, S.; Landis, C. R. J. Am. Chem. Soc. 2000,122, 12714.   DOI   ScienceOn
7 Re, S.; Morokuma, K. J. Phys. Chem. A 2001, 105, 7185.   DOI   ScienceOn
8 Kerdcharoen, T.; Morokuma, K. J. Chem. Phys. 2003, 118, 8856.   DOI   ScienceOn
9 Humbel, S.; Sieber, S.; Morokuma, K. J. Chem. Phys. 1996, 16,1959.
10 Maseras, F. Top. Organomet. Chem. 1999, 4, 165.   DOI
11 Sauer, J.; Sierka, M. J. Comp. Chem. 2000, 21, 1470.   DOI   ScienceOn
12 Frisch, M. J. et al. Gaussian 98, Revision A.1; Gaussian, Inc.: Pittsburgh, PA, 1998
13 Svensson, M.; Humbel, S.; Froese, R. D. J.; Matsubara, T.; Sieber,S.; Morokuma, K. J. Phys. Chem. 1996, 100, 19357.   DOI   ScienceOn
14 Choi, C. H.; Gordon, M. S. J. Am. Chem. Soc. 1999, 121,11311.   DOI   ScienceOn
15 Froese, R. D. J.; Morokuma, K. In The Encyclopedia ofComputational Chemistry; Schleyer, P. v. R.; Allinger, N. L.;Clark, T.; Gasteiger, J.; Kollman, P. A.; Schaefer III, H. F.;Schreiner P. R., Eds.; John Wiley: Chichester, 1998; p 1245.
16 Froese, R. D. J.; Morokuma, K. J. Phys. Chem. A 1999, 103,4580.   DOI   ScienceOn
17 Froese, R. D. J.; Morokuma, K. Chem. Phys. Lett. 1999, 305,419.   DOI   ScienceOn
18 Vreven, T.; Mennucci, B.; da Silva, C. O.; Morokuma, K.; Tomasi,J. J. Chem. Phys. 2001, 115, 62.   DOI   ScienceOn
19 Kerdcharoen, T.; Morokuma, K. Chem. Phys. Lett. 2002, 355, 257   DOI   ScienceOn
20 Frisch, M. J. et al. Gaussian 03, Revision A.1; Pittsburgh, PA, 2003.
21 Vreven, T.; Morokuma, K. J. Comp. Chem. 2000, 21, 1419.
22 Froese, R. D. J.; Musaev, D. G.; Morokuma, K. J. Am. Chem. Soc.1998, 120, 1581.   DOI   ScienceOn
23 Irle, S.; Rubin, Y.; Morokuma, K. J. Phys. Chem. A 2002, 106,680.   DOI   ScienceOn