• Title/Summary/Keyword: environmental DNA

Search Result 1,807, Processing Time 0.035 seconds

A Novel Phototransduction Pathway in the Pineal Gland and Retina

  • Okano, Toshiyuki;Kasahara, Takaoki;Fukada, Yoshitaka
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.246-248
    • /
    • 2002
  • Light is a major environmental signal for entrainment of the circadian clock, but little is known about the phototransduction pathway triggered by light-activation of photoreceptive molecule(s) responsible for the phase shift of the clock in vertebrates. The chicken pineal gland and retina contain the autonomous circadian oscillators together with the photic entrainment pathway, and hence they provide useful experimental model for the clock system. We previously demonstrated the expression and light-dependent activation of rod-type transducin $\alpha$-subunit (Gtl$\alpha$) in the chicken pineal gland. It is unlikely, however, that the pineal Gt$_1$$\alpha$ plays a major role in the photic entrainment, because the light-induced phase shift is unaffected by bloking the signaling function of Gt$_1$$\alpha$. Here, we show the expression of G 11 $\alpha$, an $\alpha$-subunit of another heterotrimeric G-protein, in the chicken pineal gland and retina by cDNA cloning, Northern blot and Western blot analyses. GIl$\alpha$-immunoreactivity was colocalized with pinopsin in the chicken pineal cells and it was found predominantly at the outer segments of photoreceptor cells in the retinal sections, suggesting functional coupling of G11 $\alpha$ with opsins in the both the tissues. By coimmunoprecipitation experiments using the retina, we showed the light- and GTP-dependent interaction between rhodopsin and G11 $\alpha$. Upon ectopic expression of a Gq/ 11-coupled receptor in cultured pineal cells, pharmacological (non-photic) activation of endogenous G11 induced phase-dependent phase shifts of the melatonin rhythm in a manner very similar to the effect of light. These results suggested opsin-G11 pathway contributing to the photic entrainment of the circadian clock.

  • PDF

Augmentation of Thermotolerance in Primary Skin Fibroblasts from a Transgenic Pig Overexpressing the Porcine HSP70.2

  • Chen, Ming-Yu;Tu, Ching-Fu;Huang, San-Yuan;Lin, Jyh-Hung;Tzang, Bor-Show;Hseu, Tzong-Hsiung;Lee, Wen-Chuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.1
    • /
    • pp.107-112
    • /
    • 2005
  • A high environmental temperature affects the economic performance of pigs. Heat shock protein 70 (HSP70) has been reported to participate importantly in thermotolerance. This study aims to produce transgenic pigs overexpressing porcine HSP70.2, the highly inducible one of HSP70 members, and to prove the cellular thermotolerance in the primary fibroblasts from the transgenics. A recombinant plasmid in which the sequence that encodes the porcine HSP70.2 gene is fused to green fluorescence protein (GFP) was constructed under the control of cytomegalovirus (CMV) enhancer and promoter. Two transgenic pigs were produced by microinjecting pCMV-HSP70-GFP DNA into the pronucleus of fertilized eggs. Immunoblot assay revealed the varied overexpression level (6.4% and 1.4%) of HSP70-GFP in transgenic pigs. After heating at $45^{\circ}C$ for 3 h, the survival rate (78.1%) of the primary fibroblast cells from the highly expressing transgenic pig exceeded that from the non-transgenic pig (62.9%). This result showed that primary fibroblasts overexpressing HSP70-GFP confer cell thermotolerance. We suggest that transgenic pigs overexpressing HSP70 might improve their thermotolerance in summer and therefore reduce the economic loss in animal production.

Isolation and Characterization of Marine Bacterial Strain Degrading Fucoidan from Korean Undaria pinnatifida Sporophylls

  • Kim, Woo-Jung;Kim, Sung-Min;Lee, Yoon-Hee;Kim, Hyun-Guell;Kim, Hyung-Kwon;Moon, Seong-Hoon;Suh, Hyun-Hyo;Jang, Ki-Hyo;Park, Yong-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.616-623
    • /
    • 2008
  • In spite of an increasing interest in fucoidans as biologically active compounds, no convenient commercial sources with fucoidanase activity are yet available. A marine bacterial strain that showed confluent growth on a minimal medium containing fucoidan, prepared from Korean Undaria pinnatifida sporophylls, as the sole carbon source was isolated and identified based on a 16S rDNA sequence analysis as a strain of Sphingomonas paucimobilis, and named Sphingomonas paucimobilis PF-1. The strain depolymerized fucoidan into more than 7 distinct low-molecular-mass fucose-containing oligosaccharides, ranging from 305 to 3,749 Da. The enzyme activity was shown to be associated with the whole cell, suggesting the possibility of a surface display of the enzyme. However, a whole-cell enzyme preparation neither released the monomer L-fucose from the fucoidan nor hydrolyzed the chromogenic substrate p-nitrophenyl-${\alpha}$-L-fucoside, indicating that the enzyme may be an endo-acting fucoidanase rather than an ${\alpha}$-L-fucosidase. Therefore, this would appear to be the first report on fucoidanolytic activity by a Sphingomonas species and also the first report on the enzymatic degradation of the Korean Undaria pinnatifida sporophyll fucoidan. Moreover, this enzyme activity may be very useful for structural analyses of fucose-containing polysaccharides and the production of bioactive fucooligosaccharides.

Modified T-RFLP Methods for Taxonomic Interpretation of T-RF

  • Lee, Hyun-Kyung;Kim, Hye-Ryoung;Mengoni, Alessio;Lee, Dong-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.624-630
    • /
    • 2008
  • Terminal restriction fragment length polymorphism (T-RFLP) is a method that has been frequently used to survey the microbial diversity of environmental samples and to monitor changes in microbial communities. T-RFLP is a highly sensitive and reproducible procedure that combines a PCR with a labeled primer, restriction digestion of the amplified DNA, and separation of the terminal restriction fragment (T-RF). The reliable identification of T-RF requires the information of nucleotide sequences as well as the size of T-RF. However, it is difficult to obtain the information of nucleotide sequences because the T-RFs are fragmented and lack a priming site of 3'-end for efficient cloning and sequence analysis. Here, we improved on the T-RFLP method in order to analyze the nucleotide sequences of the distinct T-RFs. The first method is to selectively amplify the portion of T-RF ligated with specific oligonucleotide adapters. In the second method, the termini of T-RFs were tailed with deoxynucleotides using terminal deoxynucleotidyl transferase (TdT) and amplified by a second round of PCR. The major T-RFs generated from reference strains and from T-RFLP profiles of activated sludge samples were efficiently isolated and identified by using two modified T-RFLP methods. These methods are less time consuming and labor-intensive when compared with other methods. The T-RFLP method using TdT has the advantages of being a simple process and having no limit of restriction enzymes. Our results suggest that these methods could be useful tools for the taxonomic interpretation of T-RFs.

Analysis of Vitellogenin Gene Expression by RT-PCR in Hemibarbus labeo (Cyprinidae) for the Analysis of Estrogenic Activity in Aquatic Environment (수환경 내 Estrogen 에스트로젠 활성 검출을 위한 누치 난황전구단백질 유전자 발현의 RT-PCR시험법)

  • Gye, Myung-Chan
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.1 s.106
    • /
    • pp.122-129
    • /
    • 2004
  • In an effort to develop the biomarker for monitoring the contamination of xenoestrogen in the freshwater environment of Korea, reverse transcription-polymerasechain reaction (RT-PCR) analysis of vitellogenin (VTG) gene expression was optimized in Hearisarsus Iaseo, Based on the homology of the VTG cDNA sequences between the common carp and zebra fish, a set of PCR primers for VTG mRNA amplification for H; labo was designed. VTG mRNA level in livers from female and male fishes was analyzed by RT-PCR following single injection of 17 beta estradiol($E_2$ 10 mg $kg^{-1}$ B.W.). As an internal control, beta actin mRNA was amplified. One us of total liver RNA was subjected to RT-PCR. In female the amount of PCR productof VfC gradually increased in the range from 16 to 34 cycles of amplification. On the contrary, in control male, PCR product first detected at 32 cycles of amplification and linearly increased up to 40 cycles of amplification. In $E_2$ injected male liver, the VTC mRNA level was similar to that in the female. Taken together, this result suggests that liver of male H. labo expresses minute amount of VTG mRNA which are2-l6 equivalent of female and that induction of VTG mRNA occurs in male liver after estrogen treatment. In conclusion, the optimized protocol for RT-PCR analysis of VTG mRNA expression in liver of male H. labo will provide the environmental monitoring method for the xenoestrogen contamination in the rivers in Korea.

Cytotoxicity Evaluation of Essential Oil and its Component from Zingiber officinale Roscoe

  • Lee, Yongkyu
    • Toxicological Research
    • /
    • v.32 no.3
    • /
    • pp.225-230
    • /
    • 2016
  • Zingiber officinale Roscoe has been widely used as a folk medicine to treat various diseases, including cancer. This study aims to re-examine the therapeutic potential of co-administration of natural products and cancer chemotherapeutics. Candidate material for this project, ${\alpha}$-zingiberene, was extracted from Zingiber officinale Roscoe, and ${\alpha}$-zingiberene makes up $35.02{\pm}0.30%$ of its total essential oil. ${\alpha}$-Zingiberene showed low $IC_{50}$ values, $60.6{\pm}3.6$, $46.2{\pm}0.6$, $172.0{\pm}6.6$, $80.3{\pm}6.6$ (${\mu}g/mL$) in HeLa, SiHa, MCF-7 and HL-60 cells each. These values are a little bit higher than $IC_{50}$ values of general essential oil in those cells. The treatment of ${\alpha}$-zingiberene produced nucleosomal DNA fragmentation in SiHa cells, and the percentage of sub-diploid cells increased in a concentration-dependent manner in SiHa cells, hallmark features of apoptosis. Mitochondrial cytochrome c activation and an in vitro caspase-3 activity assay demonstrated that the activation of caspases accompanies the apoptotic effect of ${\alpha}$-zingiberene, which mediates cell death. These results suggest that the apoptotic effect of ${\alpha}$-zingiberene on SiHa cells may converge caspase-3 activation through the release of mitochondrial cytochrome c into cytoplasm. It is considered that anti-proliferative effect of ${\alpha}$-zingiberene is a result of apoptotic effects, and ${\alpha}$-zingiberene is worth furthermore study to develop it as cancer chemotherapeutics.

Deletion of GSTM1 and T1 Genes as a Risk Factor for Development of Acute Leukemia

  • Dunna, Nageswara Rao;Vure, Sugunakar;Sailaja, K.;Surekha, D.;Raghunadharao, D.;Rajappa, Senthil;Vishnupriya, S.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2221-2224
    • /
    • 2013
  • The glutathione S-transferases (GSTs) are a family of enzymes involved in the detoxification of a wide range of chemicals, including important environmental carcinogens, as well as chemotherapeutic agents. In the present study 294 acute leukemia cases, comprising 152 of acute lymphocytic leukemia (ALL) and 142 of acute myeloid leukemia, and 251 control samples were analyzed for GSTM1 and GSTT1 polymorphisms through multiplex PCR methods. Significantly increased frequencies of GSTM1 null genotype (M0), GSTT1 null genotype (T0) and GST double null genotype (T0M0) were observed in the both ALL and AML cases as compared to controls. When data were analyzed with respect to clinical variables, increased mean levels of WBC, Blast %, LDH and significant reduction in DFS were observed in both ALL and AML cases with T0 genotype. In conclusion, absence of both GST M & GST T might confer increased risk of developing ALL or AML. The absence of GST enzyme might lead to oxidative stress and subsequent DNA damage resulting in genomic instability, a hallmark of acute leukemia. The GST enzyme deficiency might also exert impact on clinical prognosis leading to poorer DFS. Hence GST genotyping can be made mandatory in management of acute leukemia so that more aggressive therapy such as allogenic stem cell transplantation may be planned in the case of patients with a null genotype.

Biodegradation of Diazinon by Serratia marcescens DI101 and its Use in Bioremediation of Contaminated Environment

  • Abo-Amer, Aly E.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.1
    • /
    • pp.71-80
    • /
    • 2011
  • Four diazinon-degrading bacteria were isolated from agricultural soil by using an enrichment technique. The biochemical analysis and molecular method including RFLP indicated that these isolates were identical, and one strain designated DI101 was selected for further study. Phylogenetic analysis based on 16S rDNA sequencing indicated that the strain DI101 clearly belongs to the Serratia marcescens group. The ability of the strain to utilize diazinon as a source of carbon and phosphorus was investigated under different culture conditions. The DI101 strain was able to completely degrade 50 mg/l diazinon in MSM within 11 days with a degradation rate of 0.226 $day^{-1}$. The inoculation of sterilized soil treated with 100 mg/kg of diazinon with $10^6$ CFU/g DI101 resulted in a faster degradation rate than was recorded in non-sterilized soil. The diazinon degradation rate by DI101 was efficient at temperatures from 25 to $30^{\circ}C$ and at pHs from 7.0 to 8.0. The degradation rate of diazinon was not affected by the absence of a phosphorus supplement, and addition of other carbon sources (glucose or succinate) resulted in the slowing down of the degradation rate. The maximum degradation rate ($V_{max}$) of diazinon was 0.292 $day^{-1}$ and its saturation constant ($K_s$) was 11 mg/l, as determined by a Michaelis-Menten curve. The strain was able to degrade diethylthiophosphate-containing organophosphates such as chlorpyrifos, coumaphos, parathion, and isazofos when provided as a source of carbon and phosphorus, but not ethoprophos, cadusafos, and fenamiphos. These results propose useful information for the potential application of the DI101 strain in bioremediation of pesticide-contaminated environments.

Genetic Variants in Interleukin-2 and Risk of Lymphoma among Children in Korea

  • Song, Nan;Han, So-Hee;Lee, Kyoung-Mu;Choi, Ji-Yeob;Park, Sue-K;Jeon, Su-Jee;Lee, Yun-Hee;Ahn, Hyo-Seop;Shin, Hee-Young;Kang, Hyoung-Jin;Koo, Hong-Hoe;Seo, Jong-Jin;Choi, Ji-Eun;Kang, Dae-Hee
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.2
    • /
    • pp.621-623
    • /
    • 2012
  • To estimate the genetic susceptibility for childhood lymphoma, we conducted an association study for 23 cases and 148 controls. Total 1536 tag single nucleotide polymorphisms (SNPs) were selected in 138 candidate gene regions related to immune responses, apoptosis, the cell cycle, and DNA repair. Twelve SNPs were significantly associated with the risk of lymphoma ($P_{trend}$ <0.05) in six genes ($IL1RN$, $IL2$, $IL12RB1$, $JAK3$, $TNFRSF13B$, and $XRCC3$). The most significant association was seen for $IL2$ variant rs2069762 ($OR_{TG+GG}$ vs. TT=3.43 (1.29-9.11), $P_{trend}$=0.002, min$P$=0.005). These findings suggest that common genetic variants in $IL2$ might play a role in the pathogenesis of childhood lymphoma.

Oxidative Stress and Antioxidants in Disease and Cancer: A Review

  • Gupta, Rakesh Kumar;Patel, Amit Kumar;Shah, Niranjan;Choudhary, Arun Kumar;Jha, Uday Kant;Yadav, Uday Chandra;Gupta, Pavan Kumar;Pakuwal, Uttam
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4405-4409
    • /
    • 2014
  • Reactive oxygen species (ROS), highly reactive molecules, are produced by living organisms as a result of normal cellular metabolism and environmental factors, and can damage nucleic acids and proteins, thereby altering their functions. The human body has several mechanisms to counteract oxidative stress by producing antioxidants. A shift in the balance between oxidants and antioxidants in favor of oxidants is termed as "oxidative stress". Paradoxically, there is a large body of research demonstrating the general effect of oxidative stress on signaling pathways, less is known about the initial and direct regulation of signaling molecules by ROS, or what we term the "oxidative interface." This review focuses on the molecular mechanisms through which ROS directly interact with critical signaling molecules to initiate signaling in a broad variety of cellular processes, such as proliferation and survival (MAP kinases and PI3 kinase), ROS homeostasis, and antioxidant gene regulation (Ref-1 and Nrf-2). This review also deals with classification as well as mechanisms of formation of free radicals, examining their beneficial and deleterious effects on cellular activities and focusing on the potential role of antioxidants in preventing and repairing damage caused by oxidative stress. A discussion of the role of phytochemical antioxidants in oxidative stress, disease and the epigenome is included.