Browse > Article
http://dx.doi.org/10.5713/ajas.2005.107

Augmentation of Thermotolerance in Primary Skin Fibroblasts from a Transgenic Pig Overexpressing the Porcine HSP70.2  

Chen, Ming-Yu (Division of Biotechnology, Animal Technology Institute Taiwan)
Tu, Ching-Fu (Division of Biotechnology, Animal Technology Institute Taiwan)
Huang, San-Yuan (Division of Biotechnology, Animal Technology Institute Taiwan)
Lin, Jyh-Hung (Division of Biotechnology, Animal Technology Institute Taiwan)
Tzang, Bor-Show (Division of Biotechnology, Animal Technology Institute Taiwan)
Hseu, Tzong-Hsiung (Department of Life Science, National Tsing-Hua University)
Lee, Wen-Chuan (Division of Biotechnology, Animal Technology Institute Taiwan)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.18, no.1, 2005 , pp. 107-112 More about this Journal
Abstract
A high environmental temperature affects the economic performance of pigs. Heat shock protein 70 (HSP70) has been reported to participate importantly in thermotolerance. This study aims to produce transgenic pigs overexpressing porcine HSP70.2, the highly inducible one of HSP70 members, and to prove the cellular thermotolerance in the primary fibroblasts from the transgenics. A recombinant plasmid in which the sequence that encodes the porcine HSP70.2 gene is fused to green fluorescence protein (GFP) was constructed under the control of cytomegalovirus (CMV) enhancer and promoter. Two transgenic pigs were produced by microinjecting pCMV-HSP70-GFP DNA into the pronucleus of fertilized eggs. Immunoblot assay revealed the varied overexpression level (6.4% and 1.4%) of HSP70-GFP in transgenic pigs. After heating at $45^{\circ}C$ for 3 h, the survival rate (78.1%) of the primary fibroblast cells from the highly expressing transgenic pig exceeded that from the non-transgenic pig (62.9%). This result showed that primary fibroblasts overexpressing HSP70-GFP confer cell thermotolerance. We suggest that transgenic pigs overexpressing HSP70 might improve their thermotolerance in summer and therefore reduce the economic loss in animal production.
Keywords
Heat Shock Protein 70.2; Transgenic Pig; Thermotolerance;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Aiba-Masago, S., S. Baba, R.-Y. Li, Y. Shinmura, I. Kosugi, Y. Arai, M. Nishimura and Y. Tsutsui. 1999. Murine cytomegalovirus immediate-early promoter directs astrocytespecific expression in transgenic mice. Am. J. Pathol. 54:735-743.
2 Benjamin, I. J. and D. R. McMillan. 1998. Stress (heat shock) proteins. Circ. Res. 83:117-132.
3 Hutter, J. J., R. Mestrilk, E. K. W. Tam, R. E. Sievers, W. H. Dillmann and C. L. Wolfe. 1996. Overexpression of Heat shock protein 72 in transgenic mice decreases infarct size in vivo. Circulation 94:1408-1411.
4 Kregel, K. C. 2002. Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol. 92:2177-2186.   DOI
5 Landry, J. and P. Chretien. 1983. Relationship between hyperthermia-induced heat-shock proteins and thermotolerance in Morris hepatoma cells. Can. J. Biochem. Cell Biol. 61:428-437.
6 Lee, W. C., K. Y. Lin, Y. T. Chiu, J. H. Lin, H. C. Cheng, S. C. Huang, P. C. Yang, S. K. Liu and S. J. T. Mao. 1996. Substantial decrease of heat shock protein 90 in ventricular tissues of two sudden-death pigs with hypertrophic cardiomyopathy. FASEB J. 10:1198-1204.
7 Morimoto, R. I., A. Tissieres and C. Georgopoulos. 1994. Progress and perspectives on the biology of heat shock proteins and molecular chaperones. In: The Biology Heat Shock Proteins and Molecular Chaperones, (Ed. R. I. Morimoto, J. A. Tissierws and C. Georgopoulos). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
8 Moseley, P. L. 1997. Heat shock proteins and heat adaptation of the whole organism. J. Appl. Physiol. 83:1413-1417.
9 Munro, S. and H. R. Pelham. 1984. Use of peptide tagging to detect proteins expressed from cloned genes: deletion mapping functional domains of Drosophila hap70. EMBO J. 3:3087-3093.
10 Riabowol, K. T., L. A. Mizzen and W. J. Welch. 1988. Heat shock is lethal to fibroblasts microinjected with antibodies against hsp70. Sci. 242:433-436.
11 Tu, C. F., K. Tsuji, K. H. Lee, R. Chu, T. J. Sun, Y. C. Lee, C. N. Weng and C. J. Lee. 1999. Generation of HLA-DP transgenic pigs for the study of xenotransplantation. Int. Surg. 84:176-182.
12 Laszlo, A. and G. C. Li. 1985. Heat resistant variants of Chinese hamster fibroblasts altered in expression of heat shock protein. Proc. Natl. Acad. Sci. USA 82:8029-8033.
13 Li, G. C., L. Li, Y. K. Liu, J. Y. Mak, L. Chen and W. M. F. Lee. 1991. Thermal response of rat fibroblasts stably transfected with the human 70 kDa heat shock protein-encoding genes. Proc. Natl. Acad. Sci. USA 88:1681-1685.
14 Schwerin, M., A. Hagendorf, R. Furbass and F. Teuscher. 1999. The inducible stress protein 70.2 gene-A candidate gene for stress susceptibility in swine. Arch Tierz. 42:61-66.
15 Li, G. C. and Z. Werb. 1982. Correlation between synthesis of heat shock proteins and development of thermotolerance in Chinese hamster ovary cells. Proc. Natl. Acad. Sci. USA 79:3218-3222.
16 Milarski, K. L. and R. I. Morimoto. 1989. Mutational analysis of the human HSP70 protein: distinct domains for nucleolar localization and adenosine triphosphate binding. J. Cell. Biol. 109:1947-1962.
17 Marber, M. S., R. Mestril, S.-H. Chi, M. R. Sayen, D. M. Yellon and W. H. Dillmann. 1995. Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J. Clin. Invest. 95:1446-1456.
18 Weshler, Z., D. S. Kapp, P. F. Lord and T. Hayes. 1984. Development and decay od systemic thermotolerance in rats. Cancer Res. 44:1347-1351.
19 Landry, J., D. Bernier, P. Chretien, L. M. Nicole, R. M. Tanguay and N. Marceau. 1982. Synthesis and degradation of heat shock proteins during development and decay of thermotolerance. Cancer Res. 42:2457-2461.
20 Mirkes, P. E., L. M. Cornel, K. L. Wilson and W. H. Dillmann. 1999. Heat shock protein 70 (Hsp70) protects postimplantation murine embryos from the embryolethal effects of hyperthermia. Dev. Dyn. 214:159-170.
21 Kampinga, H. H. 1993. Thermotolerance in mammalian cell. Protein denaturation and aggregation, and stress proteins. J. Cell Sci. 104:11-17.
22 Johnston, R. N. and B. L. Kucey. 1988. Competitive inhibition of hsp70 gene expression causes thermosensitivity. Sci. 242:1551-1554.
23 Lindquist, S. and E. A. Craig. 1988. The heat-shock proteins. Annu. Rev. Genet. 22:631-677.
24 Xu, Z. L., H. Mizuguchi, A. Ishii-Watabe, E. Uchida, T. Mayumi and T. Hayakawa. 2001. Optimization of transcriptional regulatory elements for constructing plasmid vectors. Gene 272:149-156.
25 Welch, W. J. 1992. Mammalian stress response: cell physiology, structure/function of stress proteins and implications for medicine and disease. Physiol. Rev. 72:1063-1081.   DOI
26 Mizzen, L. A. and W. J. Welch. 1988. Characterization of the thermotolerant cell. I. Effects on protein synthesis activity and the regulation of heat-shock protein 70 expression. J. Cell. Biol. 106:1105-1116.
27 Kapp, D. S. and P. F. Lord. 1983. Thermal tolerance to whole body hyperthermia. Int. J. Radiat. Oncol. Biol. Phys. 9:917-921.
28 Schwerin, M., S. Maak, C. Kalbe and R. Fuerbass. 2001. Functional promoter variants of highly conserved inducible HSP70 genes significantly affect stress response. Biochim. Biophy. Acta 1522:108-111.
29 Chen, M. Y., S. Y. Huang, E.-C. Lin, T. H. Hseu and W. C. Lee. 2003. Association of a single nucleotide polymorphism in the 5'-flanking region of porcine HSP70.2 with backfat thickness in Duroc breed. Asian-Aust. J. Anim. Sci. 16:100-103.
30 Grzimek, N. K. A., J. Podlech, H.-P. Steffens, R. Holtappels, S. Schmalz and M. J. Reddehase. 1999. In vivo replication of recombinant murine cytomegalovirus driven by the paralogous major immediate-early promoter-enhancer of human cytomegalovirus. J. Virol. 73:5043-5055.
31 Ulmasov, K. A., S. Shammakov, K. Karaev and M. B. Evgen'ev. 1992. Heat shock proteins and thermotolerance in lizard. Proc. Natl. Acad. Sci. USA 98:1666-1670.
32 Trost, S. U., J. H. Omens, W. J. Karlon, M. Meyer, R. Mestril, J. W. Covell and W. H. Dillmann. 1998. Protection against myocardial dysfunction after a brief ischemic period in transgenic mice expressing inducible heat shock protein 70. J. Clin. Invest. 101:855-862.
33 Huang, S. Y., Y. H. Kuo, W. C. Lee, H. L. Tsou, Y. P. Lee, H. L. Chang, J. J. Wu and P. C. Yang. 1999. Substantial decrease of heat-shock protein 90 precedes the decline of sperm motility during cooling of boar spermatozoa. Theriogenology 51:1007-1016.
34 King, Y. T., C. S. Lin, J. H. Lin and W. C. Lee. 2002. Whole-body hyperthermia-induced thermotolerance is associated with the induction of heat shock protein 70 in mice. J. Exp. Biol. 205:273-278.
35 Hightower, L. E. 1991. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66:191-197.   DOI   ScienceOn
36 Lee, C. K. and J. A. Piedrahita. 2003. Transgenesis and germ cell engineering in domestic animals. Asian-Aust. J. Anim. Sci. 16:910-927.
37 Lewis, M. J. and H. R. Pelham. 1985. Involvement of ATP in the nuclear and nucleolar functions of the 70 kD heat shock protein. Dur. Mol. Biol. Organ. J. 4:3137-3143.
38 Lowry, O. H., N. J. Rosebrough, A. L. Farr and R. J. Randall. 1951. Protein measurement with the Folin protein reagent. J. Biol. Chem. 193:265-275.
39 Theodorakis, N. G., D. Drujan and A. De Maio. 1999. Thermotolerant cells show an attenuated expression of Hsp70 after heat shock. J. Biol. Chem. 274:12081-12086.