Browse > Article

Isolation and Characterization of Marine Bacterial Strain Degrading Fucoidan from Korean Undaria pinnatifida Sporophylls  

Kim, Woo-Jung (Department of Biotechnology and Biomaterial Engineering Research Center, The Catholic University of Korea)
Kim, Sung-Min (Department of Biotechnology and Biomaterial Engineering Research Center, The Catholic University of Korea)
Lee, Yoon-Hee (Department of Biotechnology and Biomaterial Engineering Research Center, The Catholic University of Korea)
Kim, Hyun-Guell (Department of Biotechnology and Biomaterial Engineering Research Center, The Catholic University of Korea)
Kim, Hyung-Kwon (Department of Biotechnology and Biomaterial Engineering Research Center, The Catholic University of Korea)
Moon, Seong-Hoon (Biotechnology Policy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Suh, Hyun-Hyo (Department of Environmental Engineering, Jinju National University)
Jang, Ki-Hyo (Department of Food and Nutrition, Kangwon National University)
Park, Yong-Il (Department of Biotechnology and Biomaterial Engineering Research Center, The Catholic University of Korea)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.4, 2008 , pp. 616-623 More about this Journal
Abstract
In spite of an increasing interest in fucoidans as biologically active compounds, no convenient commercial sources with fucoidanase activity are yet available. A marine bacterial strain that showed confluent growth on a minimal medium containing fucoidan, prepared from Korean Undaria pinnatifida sporophylls, as the sole carbon source was isolated and identified based on a 16S rDNA sequence analysis as a strain of Sphingomonas paucimobilis, and named Sphingomonas paucimobilis PF-1. The strain depolymerized fucoidan into more than 7 distinct low-molecular-mass fucose-containing oligosaccharides, ranging from 305 to 3,749 Da. The enzyme activity was shown to be associated with the whole cell, suggesting the possibility of a surface display of the enzyme. However, a whole-cell enzyme preparation neither released the monomer L-fucose from the fucoidan nor hydrolyzed the chromogenic substrate p-nitrophenyl-${\alpha}$-L-fucoside, indicating that the enzyme may be an endo-acting fucoidanase rather than an ${\alpha}$-L-fucosidase. Therefore, this would appear to be the first report on fucoidanolytic activity by a Sphingomonas species and also the first report on the enzymatic degradation of the Korean Undaria pinnatifida sporophyll fucoidan. Moreover, this enzyme activity may be very useful for structural analyses of fucose-containing polysaccharides and the production of bioactive fucooligosaccharides.
Keywords
Fucoidan; fucoidanase; marine bacterium; fucooligosaccharides;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 9  (Related Records In Web of Science)
연도 인용수 순위
1 Bitter, T. and H. M. Muir. 1962. A modified uronic acid carbazole reaction. Anal. Biochem. 4: 330-334   DOI
2 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254   DOI   ScienceOn
3 Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimeteric method for determination of sugars and related substances. 28: 350-356   DOI
4 Hoshino, T., T. Hayashi, J. Hayashi, J. B. Lee, and U. Sankawa. 1998. An antivirally active sulfated polysaccharide from Sargassum horneri (TURNER) C. AGARDH. Biol. Pharm. Bull. 21: 730- 734   DOI   ScienceOn
5 Kitamura, K., M. Matsuo, and T. Yasui. 1992. Enzymic degradation of fucoidan by fucoidanase from the hepatopancreas of Patinopecten yessoensis. Biosci. Biotechnol. Biochem. 56: 490-494   DOI
6 Mourao, P. A. S. and M. S. Pereira. 1999. Searching for alternatives to heparin: Sulfated fucans from marine invertebrates. Trends Cardiovasc. Med. 9: 225-232   DOI   ScienceOn
7 Nishino, T. and H. Nagumo. 1991. Structural characterization of a new anticoagulant fucan sulfate from the brown seaweed Ecklonia kurome. Carbohydr. Res. 30: 535-539
8 Park, Y. I., H. A. Wood, and Y. C. Lee. 1999. Monosaccharide compositions of Danaus plexippus (monarch butterfly) and Trichoplusia ni (cabbage looper) egg glycoproteins. Glycoconjugate J. 16: 629-638   DOI   ScienceOn
9 Patankar, S., S. Oehniger, T. Barnett, R. L. Williams, and G. F. Clark. 1993. A revised structure for fucoidan may explain some of its biological activities. J. Biol. Chem. 268: 21770-21776
10 Sakai, T., T. Kawai, and I. Kato. 2004. Isolation and characterization of a fucoidan-degrading marine bacterial strain and its fucoidanase. Mar. Biotechnol. 6: 335-346   DOI   ScienceOn
11 Urvantseva, A. M., I. Y. Bakunina, O. I. Nedashkovskaya, S. B. Kim, and T. N. Zvyagintseva. 2006. Distribution of intracellular fucoidan hydrolases among marine bacteria of the family Flavobacteriaceae. Biochem. Microbiol. 42: 484-491   DOI   ScienceOn
12 Zhuang, C., H. Itoh, T. Mizuno, and H. Ito. 1995. Antitumor active fucoidan from the brown seaweed, Umitoranoo (Sargassum thunbergii). Biosci. Biotechnol. Biochem. 59: 563-567   DOI   ScienceOn
13 Shibata, H., M. Iimuro, N. Uchiya, T. Kawamori, M. Nagaoka, S. Ueyama, S. Hashimoto, T. Yokokura, T. Sugimura, and K. Wakabayashi. 2003. Preventive effects of Cladosiphon fucoidan against Helicobacter pylori infection in Mongolian gerbils. Helicobacter 8: 59-65   DOI   ScienceOn
14 Millet J., S. C. Jouault, S. Mauray, J. Theveniaux, C. Sternberg, C. B. Vidal, and A. M. Fischer. 1999. Antithrombotic and anticoagulant activities of a low molecular weight fucoidan by the subcutaneous route. Thromb. Haemost. 81: 391-395   DOI
15 Hahnenberger, R. and A. M. Jakobson. 1991. Antiangiogenic effect of sulphated glycosaminoglycans and polysaccharides in the chick embryo chorioallantoic membrane. Glycoconjugate J. 8: 350-353   DOI   ScienceOn
16 Beress, A., O. Wassermann, T. Bruhn, and L. Beress. 1993. A new procedure for the isolation of anti-HIV compounds (polysaccharides and polyphenols) from the marine alga Fucus vesiculosus. J. Nat. Prod. 56: 478-488   DOI   ScienceOn
17 Furukawa, S., T. Fujikawa, D. Koga, and A. Ide. 1992. Purification and some properties of exo-type fucoidanase from Vibrio sp. N-5. Biosci. Biotechnol. Biochem. 56: 1829-1834   DOI
18 Sakai, T., H. Kimura, K. Kojima, K. Shimanaka, K. Ikai, and I. Kato. 2003. Marine bacterial sulfated fucoglucuronomannan (SFGM) lyase digests brown algal SFGM into trisaccharides. Mar. Biotechnol. 5: 70-78   DOI   ScienceOn
19 Somogyi, M. 1952. Notes on sugar determination. J. Biol. Chem. 195: 19-23
20 Weitz, J. L. 1997. Drug therapy: Low molecular weight heparins. N. Engl. J. Med. 337: 688-699   DOI   ScienceOn
21 Choi, W. S. and C. H. Hong. 2003. Rapid enumeration of Listeria monocytogenes in milk using competitive PCR. Int. J. Food Microbiol. 84: 79-85   DOI   ScienceOn
22 Descamps, V., S. Colin, M. Lahaye, M. Jam, C. Richard, P. Potin, R. Barbeyron, J. C. Yvin, and B. Kloareg. 2005. Isolation and culture of a marine bacterium degrading the sulfated fucans from marine brown algae. Mar. Biotechnol. 8: 1-13
23 McCandless, E. L. and J. S. Craigie. 1979. Sulfated polysaccharides in red and brown algae. Annu. Rev. Plant Physiol. 30: 41-67   DOI   ScienceOn
24 Uchida, M. 1995. Enzyme activities of marine bacteria involved in Laminaria-thallus decomposition and the resulting sugar release. Mar. Biol. 123: 639-644   DOI   ScienceOn
25 McClure, M. O., J. P. Moore, D. F. Blanc, P. Scotting, G. M. Cook, R. J. Keynes, J. N. Weber, D. Davies, and R. A. Weiss. 1992. Investigation into the mechanism by which sulfated polysaccharides inhibit HIV infection in vitro. AIDS Res. Hum. Retroviruses 8: 19-26   DOI   ScienceOn
26 Balkwill, D., J. K. Fredrickson, and M. F. Romine. 2006. Sphingomonas and related genera, pp. 605-629. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, and E. Stackebrandt (eds.), The Prokaryotes, Vol. 7: Proteobacteria: Delta, Epsilon Subclass. Springer, New York, U.S.A.
27 Tanaka, K. and S. Sorai. 1970. Hydrolysis of fucoidan by abalone liver $\alpha$-L-fucosidase. FEBS Lett. 9: 45-48   DOI   ScienceOn
28 Thanassi, N. M. and H. Nakada. 1967. Enzymic degradation of fucoidan by enzymes from the hepatopancreas of abalone, Haliotus species. Arch. Biochem. Biophys. 118: 172-177   DOI
29 Tako, M., M. Uehara, Y. Kawashima, I. Chinen, and F. Hongo. 1996. Isolation and identification of fucoidan from Okinawamozuku, Oyo Toshitsu Kagaku. J. Appl. Glycosci. 43: 143-148
30 Bakunina, I. Y., O. I. Nedashkovshaia, S. A. Alekseeva, E. P. Ivanova, L. A. Romanenko, N. M. Gorshkova, V. V. Isakov, T. N. Zviagintseva, and V. V. Mikhailov. 2002. Degradation of fucoidan by the marine proteobacterium Pseudoalteromonas citrea. Microbiology 71: 41-47   DOI   ScienceOn
31 Sakai, T., H. Kimura, and I. Kato. 2002. A marine strain of Flavobacteriaceae utilizes brown seaweed fucoidan. Mar. Biotechnol. 4: 399-405   DOI   ScienceOn
32 Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-175, In E. Stackerbrandt and M. Goodfellow (eds.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons, New York, NY, U.S.A.
33 Ostergaard, C., R. V. Yieng-Kow, T. Benfield, N. Frimodt- Moller, F. Espersen, and J. D. Lundgren. 2000. Inhibition of leukocyte entry into the brain by the selectin blocker fucoidin decreases interleukin-1 (IL-1) levels but increases IL-8 levels in cerebrospinal fluid during experimental pneumococcal meningitis in rabbits. Infect. Immun. 68: 3153-3157   DOI   ScienceOn
34 Berteau, O. and B. Mulloy. 2003. Sulfated fucans, fresh perspectives: Structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharides. Glycobiology 13: 29R-40R   DOI
35 Barbosa, D. C., J. W. Bae, I. V. D. Weid, N. Vaisman, Y. D. Nam, H. W. Chang, Y. H. Park, and L. Seldin. 2006. Halobacillus blutaparonensis sp. nov., a moderately halophilic bacterium isolated from Blutaparon portulacoides roots in Brazil. J. Microbiol. Biotechnol. 16: 1862-1867   과학기술학회마을
36 Silvestri L. J., R. E. Hurst, L. Simpson, and J. M. Settine. 1982. Analysis of sulfate in complex carbohydrates. Anal. Biochem. 123: 303-309   DOI   ScienceOn
37 Riou, D., S. Colliec-Jouault, D. Pinczon du sel, S. Bosch, S. Siavoshian, V. LeBert, C. Tomasoni, C. Sinquin, P. Durand, and C. Roussakis. 1996. Antitumor and antiproliferative effects of a fucan extracted from Ascophyllum nodosum against a nonsmall- cell bronchopulmonary carcinoma line. Anticancer Res. 16: 1213-1218
38 Daniel, R., O. Berteau, J. Jozefonvicz, and N. Goasdoue. 1999. Degradation of algal (Ascophyllum nodosum) fucoidan by an enzymatic activity contained in digestive glands of the marine mollusc Pecten maximus. Carbohydr. Res. 322: 291-297   DOI   ScienceOn
39 Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
40 Altschul, S. F., W. Miller, E. W. Meyers, and D. J. Limpman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410   DOI
41 Chevolot, L., A. Foucault, F. Chaubet, N. Kervarec, C. Sinquin, A. M. Fisher, and C. Boisson-Vidal. 1999. Further data on the structure of brown seaweed fucans: Relationships with anticoagulant activity. Carbohydr. Res. 319: 154-165   DOI   ScienceOn
42 Shuang, J. L., C. H. Liu, S. Q. An, Y. Xing, G. Q. Zheng, and Y. F. Shen. 2006. Some universal characteristics of intertidal bacterial diversity as revealed by 16S rDNA gene-based PCR clone analysis. J. Microbiol. Biotechnol. 16: 1882-1889   과학기술학회마을