• Title/Summary/Keyword: enrichment

Search Result 1,855, Processing Time 0.029 seconds

Geo-educational Value of Deokmyeong-ri area in Goseong-gun, Gyeongsangnamdo (경남 고성군 덕명리 일원의 지질 교육적 가치)

  • Kyeong-Jin Park;Jae Woo Lee;Dal-Yong, Kong;Yong Sik Gihm
    • Journal of the Korean earth science society
    • /
    • v.44 no.6
    • /
    • pp.611-628
    • /
    • 2023
  • This study aimed to explore the geo-educational value of Deokmyeong-ri in Goseong-gun, Gyeongsangnamdo, through field research. The study area comprises well-exposed outcrops, which can be used as field sites during field trip for studying sedimentary structures (normal grading bedding, cross bedding, ripple, and desiccation crack), coastal depositional environments (coastal cliff, shore platform, and gravel beach), basic principles of relative dating (unconformity, fault, intrusion, and xenolith), and columnar joints. This study evaluated the field sites based on the achievement standards and textbooks used in the science curriculum. The field sites have a high educational value because they exhibit typicality, as mentioned in the textbook, and provide study materials for enrichment learning. Furthermore, Deokmyeong-ri Area has well-developed tourist and educational infrastructures; thus, it is a safe place for geological education.

Chlorophyll contents and expression profiles of photosynthesis-related genes in water-stressed banana plantlets

  • Sri Nanan Widiyanto;Syahril Sulaiman;Simon Duve;Erly Marwani;Husna Nugrahapraja;Diky Setya Diningrat
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.127-136
    • /
    • 2023
  • Water scarcity decreases the rate of photosynthesis and, consequently, the yield of banana plants (Musa spp). In this study, transcriptome analysis was performed to identify photosynthesis-related genes in banana plants and determine their expression profiles under water stress conditions. Banana plantlets were in vitro cultured on Murashige and Skoog agar medium with and without 10% polyethylene glycol and marked as BP10 and BK. Chlorophyll contents in the plant shoots were determined spectrophotometrically. Two cDNA libraries generated from BK and BP10 plantlets, respectively, were used as the reference for transcriptome data. Gene ontology (GO) enrichment analysis was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) and visualized using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway prediction. Morphological observations indicated that water deficiency caused chlorosis and reduced the shoot chlorophyll content of banana plantlets. GO enrichment identified 52 photosynthesis-related genes that were affected by water stress. KEGG visualization revealed the pathways related to the 52 photosynthesisr-elated genes and their allocations in four GO terms. Four, 12, 15, and 21 genes were related to chlorophyll biosynthesis, the Calvin cycle, the photosynthetic electron transfer chain, and the light-harvesting complex, respectively. Differentially expressed gene (DEG) analysis using DESeq revealed that 45 genes were down-regulated, whereas seven genes were up-regulated. Four of the down-regulated genes were responsible for chlorophyll biosynthesis and appeared to cause the decrease in the banana leaf chlorophyll content. Among the annotated DEGs, MaPNDO, MaPSAL, and MaFEDA were selected and validated using quantitative real-time PCR.

Preliminary Study on the Ultramafic Rocks from the Chungnam Province, Korea (충남지역에 분포하는 초염기성암의 기원규명을 위한 기초연구)

  • Wee, Soo-Meen;Choi, Seon-Gyu;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.27 no.2
    • /
    • pp.171-180
    • /
    • 1994
  • Several ultramafic bodies and ultramafic origin talc deposits are distributed in Chungnam province near the contact zone with Ogchun fold belt They occur as discontinued belt form with northeast trending, and most of them are more or less sepentinized. Major, trace, and rare earth elements analyses were made of the ultramafics from the study area to constrain their origin and genetic relationships. Compared to the primitive mantle estimates of privious workers, the correlations defined by the studied rock samples indicate similar Ni but very lower $Al_{2}O_{3}$, CaO and $TiO_{2}$ contents. It is inferred that source material of the studied rocks might be residual mantle which had undergone a large degree of partial melting event. The REE patterns show relatively flat to enriched in LREE (chondrite normalized La/Yb and Sm/Yb ratios are 1.1-5.2 and 1.2-1.6). Several alternative explaination are possible for LREE enrichment patterns in the studied ultramafic rocks such as 1) enrichment due to late stage alteration, 2) enriched pre-melting composition, and 3) mixing of two components. Based on the result, the LREE enrichment characteristic of the studied rocks might be result from the mixture of two geochemically distinct components; one is depleted residual mantle and the other component which determine the abundances of incompatible elements and responsible for the LREE enrichment.

  • PDF

Performance Test of Portable Hand-Held HPGe Detector Prototype for Safeguard Inspection (안전조치 사찰을 위한 휴대형 HPGe 검출기 시제품 성능평가 실험)

  • Kwak, Sung-Woo;Ahn, Gil Hoon;Park, Iljin;Ham, Young Soo;Dreyer, Jonathan
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.54-60
    • /
    • 2014
  • IAEA has employed various types of radiation detectors - HPGe, NaI, CZT - for accountancy of nuclear material. Among them, HPGe has been mainly used in verification activities required for high accuracy. Due to its essential cooling component(a liquid-nitrogen cooling or a mechanical cooling system), it is large and heavy and needs long cooling time before use. New hand-held portable HPGe has been developed to address such problems. This paper deals with results of performance evaluation test of the new hand-held portable HPGe prototype which was used during IAEA's inspection activities. Radioactive spectra obtained with the new portable HPGe showed different characteristics depending on types and enrichments of nuclear materials inspected. Also, Gamma-rays from daughter radioisotopes in the decay series of $^{235}U$ and $^{238}U$ and characteristic x-rays from uranium were able to be remarkably separated from other peaks in the spectra. A relative error of enrichment measured by the new portable HPGe was in the range of 9 to 27%. The enrichment measurement results didn't meet partially requirement of IAEA because of a small size of a radiation sensing material. This problem might be solved through a further study. This paper discusses how to determine enrichment of nuclear material as well as how to apply the new hand-held portable HPGe to safeguard inspection. There have been few papers to deal with IAEA inspection activity in Korea to verify accountancy of nuclear material in national nuclear facilities. This paper would contribute to analyzing results of safeguards inspection. Also, it is expected that things discussed about further improvement of a radiation detector would make contribution to development of a radiation detector in the related field.

Heavy Metal Contamination of Soils and Stream Sediments at the Sanggok Mine Drainage, Upper Chungju Lake, Korea (충주호 상류, 상곡광산 수계에 분포하는 토양과 하상퇴적물의 중금속 오염)

  • 이현구;이찬희
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.1
    • /
    • pp.10-20
    • /
    • 1998
  • Heavy metal contamination in subsurface soils and stream sediments at the Suggok mine area were investigated on the basis of major, trace and rare earth elements geochemistry and mineralogy. The Sanggok mine area is mainly composed of Cambro-Ordovician carbonate rocks. The mine had been mined for Pb-Zn-Fe and Au- Ag, but already closed in past. For major elements, especially Fe (mean value=18.58 wt.%) and Mn (mean value=4. 18 wt.%) are enriched in soils, and the average enrichment indices of soils and sediments are 6.84 and 1.54, respectively. The average enrichment index of rare earth elements are 0.92 of mining drainage sediments and 0.52 of subsurface soils on the tailing dam. Concentrations of minor and/or environmental toxic elements in those samples range from 29 to 3400 for As,1 to 11 for Cd, 35 to 292 for Cu, 50 to 1827 for Pb, 1 to 22 for Sb and 112 to 2644 for Zn. Extremely high concentrations (mean values) are found in subsurface soils on the tailing dam (As=2278, Cd=7, Cu=206, Pb=1372, Sb=14 and Zn=2231 ppm, respectively). Average enrichment index normalized by composition of non-mining drainage sediments is 2.42 in mining drainage sediments and 25.47 in subsurface soils on the tailing dam. Based on EPA value, enrichment index of toxic elements is 0.53 in non-mining drainage sediments, 1.84 in mining drainage sediments and 23.71 in subsurface soils on the tailing dam. As a results from X-ray powder diffraction method, mineral composition of soils and sediments near the mine area varied in part, and are calcite, dolomite, magnesite, quartz, mica, chlorite and clay minerals. With the separation of heavy minerals, soils and sediments of highly concentrated toxic elements included some pyrite, arsenopyrite, sphalerite, galena, goethite and hydroxide minerals on the polished sections.

  • PDF

Petrochemistry and Environmental Geochemistry of Shale and Coal from the Daedong Supergroup, Chungnam Coal Field, Korea (충남탄전, 대동누층군의 셰일과 탄질암에 관한 암석화학 및 환경지구화학적 특성)

  • Lee, Chan Hee;Lee, Hyun Koo;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.30 no.5
    • /
    • pp.417-431
    • /
    • 1997
  • Characteristics of sedimentary rocks and enrichment of toxic elements in shale and coal from the Chungnam coal field were investigated based upon geochemistry of major, trace and rare earth elements. Shale and coal of the area are interbedded along the Traissic to the Jurassic Daedong Supergroup, which can be subdivided into grey shale, black shale and coal. The coal had been mined, however all the mines are abandonded due to the economic problems. The shale and coal are characterized by relatively low contents of $SiO_2$, and $Al_2O_3$ and high levels of loss-on-ignition (LOI), CaO and $Na_2O$ in comparison with the North American Shale Composite (NASC). Light rare earth elements (La, Ce, Yb and Lu) are highly enriched with the coal. Ratios of $Al_2O_3/Na_2O$ and $K_2O/Na_2O$ in shale and coal range from 30.0 to 351.8 and from 4.2 to 106.8, which have partly negative correlations against $SiO_2/Al_2O_3$ (1.24 to 6.06), respectively. Those are suggested that controls of mineral compositions in shale and coal can be due to substitution and migration of those elements by diagenesis and metamorphism. Shale and coal of the area may be deposited in terrestrial basin deduced from high C/S (39 to 895) and variable composition of organic carbon (0.39 to 18.40 wt.%) and low contents of reduced sulfur (0.01 to 0.05 wt.%). These shale and coal were originated from the high grade metamorphic and/or igneous rocks, and the rare earth elements of those rocks are slightly influenced with diagenesis and metamorphism on the basis of $Al_2O_3$ versus La, La against Ce, Zr versus Yb, the ratios of La/Ce (0.38 to 0.85) and Th/U (3.6 to 14.6). Characteristics of trace and rare earth elements as Co/Th (0.07 to 0.86), La/Sc (0.31 to 11.05), Se/Th (0.28 to 1.06), V/Ni (1.14 to 3.97), Cr/V (1.4 to 28.3), Ni/Co (2.12 to 8.00) and Zr/Hf (22.6~45.1) in the shale and coal argue for inefficient mixing of the simple source lithologies during sedimentation. These rocks also show much variation in $La_N/Yb_N$ (1.36 to 21.68), Th/Yb (3.5 to 20.0) and La/Th (0.31 to 7.89), and their origin is explained by derivation from a mixture of mainly acidic igneous and metamorphic rocks. Average concentrations in the shale and coal are As=7.2 and 7.5, Ba=913 and 974, Cr=500 and 145, Cu=20 and 26, Ni=38 and 35, Pb=30 and 36, and Zn=77 and 92 ppm, respectively, which are similar to those in the NASC. Average enrichment indices for major elements in the shale (0.79) and coal (0.77) are lower than those in the NASC. In addition, average enrichment index for rare earth elements in coal (2.39) is enriched rather than the shale (1.55). On the basis of the NASC, concentrations of minor and/or environmental toxic elements in the shale and coal were depleted of all the elements examined, excepting Cr, Pb, Rb and Th. Average enrichment indices of trace and/or potentially toxic elements (As, Cr, Cu, Ni, Pb, U and Zn) are 1.23 to 1.24 for shale and 1.06 to 1.22 for coal, respectively.

  • PDF

Reference Values and Water quality Assessment Based on the Regional Environmental Characteristics (해역의 환경특성을 고려한 해양환경 기준설정과 수질등급 평가)

  • Rho, Tae-Keun;Lee, Tong-Sup;Lee, Sang-Ryong;Choi, Man-Sik;Park, Chul;Lee, Jong-Hyun;Lee, Jae-Young;Kim, Seung-Su
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.2
    • /
    • pp.45-58
    • /
    • 2012
  • For the development of reference values and evaluation of water quality in various environmental conditions, we divided the coastal region around Korean peninsular into 5 distinctive ecological regions based on the influence of surface current, depth, tidal range, turbidity, and climate condition. We used national marine environment monitoring data collected by National Fisheries Research & Development Institute(NFRDI) from 2000-2009. For the reference values, we used maximum seasonal mean from 2000 to 2007 for DIN, DIP, and chlorophyll-a and minimum seasonal mean for secchi depth measured at stations without the influence of river runoff in each ecological regions. For the reference value of bottom dissolved oxygen saturation, we used minimum mean value of 90% calculated from minimal riverine influence stations of whole regions. We calculated enrichment score for each assessment criteria. The enrichment score of DIN, DIP, and Chlorophyll-a was 1 (=< reference value), 2 (< 110% of reference value), 3 (< 125% of reference value), 4 (< 150% of reference value), and 5 (> 150% of reference value). The enrichment score of DO saturation and Secchi depth was 1 (> reference value), 2 (> 90% of reference value), 3 (>75 % of reference value), 4 (> 50% of reference value), and 5 (< 50% of reference value). We calculated water quality index using weighted linear combination of five enrichment score for the comparison of whole regions. From the water quality index distribution calculated from all stations between 2000 and 2007 period, we classified into 5 grade based on the standard deviation calculated from total water quality index. We assigned grade very good(I), good(II), moderate(III), bad(IV), and very bad(V) when the water quality index was less than 23, minimum + 1 sd, +2 sd, +3 sd, and grater than minium+ 3 sd, respectively.

Dispersion Characteristics of Hazardous Elements for the Stream Sediments of Primary Channels in the Namhae-Hwngye area (남해-화개지역 1차 수계 하상퇴적토의 환경유해원소 분산특성)

  • Park, Yaung-Seog;Park, Dae-Woo;Kim, Jong-Kyun;Hong, In-Hee;Lim, Sung-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.6
    • /
    • pp.107-117
    • /
    • 2007
  • Dispersion characteristics and envirounmental impactes of the stream sediments were investigated and geochemical disaster in the Namhae-Hwagye area was predicted. Stream sediments having no possibility of contamination effect and representing drainage basins were collected. Major and hazardous elements concentrations were determined by XRF, ICP-AES and NAA analysis methods. Acid decomposition for the ICP-AES have been used $HClO_4$ and HF with $200^{\circ}C$ heating at 1'st and after that $HClO_4$, HF and HCl with $200^{\circ}C$ heating at 2'nd stage. Hazardous elements concentrations for the stream sediments in the Namhae area were Cu $5.66{\sim}168\;ppm$, Pb $18.0{\sim}40.7\;ppm$, Cr $21.6{\sim}147\;ppm$, Co $4.86{\sim}25.3\;ppm$. Hazardous elements concentrations for the stream sediments in the Hwagye area were Cu $16.4{\sim}41.2\;ppm$, Pb $26.5{\sim}37.5\;ppm$ Cr $79.6{\sim}153\;ppm$, Co $15.7{\sim}29.5\;ppm$. Concentration of Cu and Co in the stream sediments show a negative correlation with $SiO_2$ in all study area. According to E.I.(Enrichment Index) of stream sediments was not enriched in study area. And average E.I. was 0.35 (Namhae) and 0.56 (Hwagye) respectively. The stream sediments were enriched as in order of Pb > Cr > Co > Cu. And the average of Enrichment Factor (E.F.) was 0.46 to 2.84, respectively. E.F. concentration of Cu and Co were nearly similar enrichment characteristic but E.F. concentration of Cr were higher enrichnent characteristic in Namhae than Hwagye area. Pb was highly enriched in all study area but the tolerable level that used to investigate the enrichment degree of hazardous elements, was not exposed to harmful hazardous elements.

Wet Deposition of Heavy Metals during Farming Season in Taean, Korea (태안지역 강우의 중금속 함량 평가)

  • Jung, Goo-Bok;Kim, Min-Kyeong;Lee, Jong-Sik;Kim, Won-Il;Kim, Gun-Yeob;Ko, Byong-Gu;Kang, Kee-Kyung;Kwon, Soon-Ik
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.153-159
    • /
    • 2011
  • BACKGROUND: This experiment was conducted to investigate the distribution and burden characteristics of heavy metal in the rainwater sampled at Taean area, in the middle part of Korea, from April 2002 to October 2003. METHODS AND RESULTS: The relationship between concentration of heavy metal and other chemical properties in the rainwaters was also evaluated. Chemical properties in the rainwater were various differences with raining periods and years. It appeared that a weighted average pH values of rainwater was ranged from 5.0 to 5.1. Heavy metal concentrations in the rainwater were ranked as Pb > Zn > Cu > Ni > As > Cr > Cd. As compared with heavy metal concentrations of rainwater in 2002, Cu, Pb, and Zn were higher than other elements in 2003. There were positive correlation between major ionic components, such as ${NH_4}^+$, $Ca^{2+}$, $Mg^{2+}$, $K^+$, $Na^+$, ${SO_4}^{2-}$ and ${NO_3}^-$, and As, Cd, Zn, Cr, and Ni concentrations in rainwater. For heavy metal distribution of rainwater, the order of average enrichment factor was Cd > Pb > As > Cu > Zn > Ni > Cr, and these were relatively higher than the natural components such as Fe, Mg and Ca. The monthly enrichment factor were relatively high, from August to October at Taean. The monthly amount of heavy metal precipitation was high in the rainy season from July to August because of great influence of rainfall. CONCLUSION(s): The results of this study suggest that the heavy metals(Cd, Pb, As, Cu, and Zn) of rainwater is strongly influenced by anthropogenic sources rather than natural sources.

Investigation of PWR Spent Fuels for the Design of a Deep Geological Repository (심층처분시스템 설계를 위한 경수로 사용후핵연료 현황 분석)

  • Cho, Dong-Keun;Kim, Jungwoo;Kim, In-Young;Lee, Jong-Youl
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.339-346
    • /
    • 2019
  • Based on the $8^{th}$ Basic Plan for Electric Power Demand and Supply, an estimation has been made for inventories and characteristics of spent fuel (SF) to be generated from existing and planned nuclear power plants. The characteristics under consideration in this study are dimensions, fuel array, $^{235}U$ enrichment, discharge burnup, and cooling time for each fuel assembly. These are essentially needed for designing a disposal facility for SFs. It appears that the anticipated quantity by the end of 2082 is about 62,500 assemblies for PWR SFs. The inventories of Westinghouse-type and Korean-type SFs were revealed to be 60% and 40%, respectively as of the end of 2018. The proportion of SFs with initial $^{235}U$ enrichment below 4.5 weight percent (wt%) was shown to be approximately 90% in total as of the end of 2018. As of 2077, more than 97% of SFs generated from Westinghouse-type nuclear reactors were shown to have cooling time of over 50 years. As of 2125, more than 98% of SFs generated from Korean-type nuclear reactors were shown to have cooling time of over 45 years. Based on these results, for the efficient design of a disposal system, it is reasonable to adopt two types of reference spent fuel. SF of KSFA with $^{235}U$ enrichment of 4.5 wt%, discharge burnup of 55 GWd/tU, and cooling time of 50 years was determined as reference fuel for Westinghouse-type SFs; SF of PLUS7 with $^{235}U$ enrichment of 4.5 wt%, discharge burnup of 55 GWd/tU, and cooling time of 45 years was determined as reference fuel for Korean-type SFs.