DOI QR코드

DOI QR Code

Geo-educational Value of Deokmyeong-ri area in Goseong-gun, Gyeongsangnamdo

경남 고성군 덕명리 일원의 지질 교육적 가치

  • Kyeong-Jin Park (Korea Institute for Curriculum and Evaluation) ;
  • Jae Woo Lee (Department of Geology, Kyungpook National University) ;
  • Dal-Yong, Kong (National Research Institute of Maritime Cultural Heritage) ;
  • Yong Sik Gihm (Department of Geology, Kyungpook National University)
  • Received : 2023.12.08
  • Accepted : 2023.12.26
  • Published : 2023.12.31

Abstract

This study aimed to explore the geo-educational value of Deokmyeong-ri in Goseong-gun, Gyeongsangnamdo, through field research. The study area comprises well-exposed outcrops, which can be used as field sites during field trip for studying sedimentary structures (normal grading bedding, cross bedding, ripple, and desiccation crack), coastal depositional environments (coastal cliff, shore platform, and gravel beach), basic principles of relative dating (unconformity, fault, intrusion, and xenolith), and columnar joints. This study evaluated the field sites based on the achievement standards and textbooks used in the science curriculum. The field sites have a high educational value because they exhibit typicality, as mentioned in the textbook, and provide study materials for enrichment learning. Furthermore, Deokmyeong-ri Area has well-developed tourist and educational infrastructures; thus, it is a safe place for geological education.

이 연구는 경남 고성군 덕명리 일원에 대한 지질 교육적 가치를 탐색하기 위한 것이다. 이를 위하여 이 일대에 대한 야외조사를 통해 퇴적구조(점이층리, 사층리, 연흔, 건열), 해안 퇴적환경(해식애, 파식대지, 자갈 해빈), 상대연령 측정(부정합, 단층, 관입, 포획암) 및 주상절리와 관련된 야외 지질 학습이 가능한 다수의 관찰 지점이 분포하고 있음을 확인하였다. 이후 교육과정의 성취기준 및 교과서의 학습 요소와의 부합 정도를 분석한 결과, 모든 관찰 지점에서 교과서에 제시된 지질학적 특성이 잘 나타나는 전형성을 보여주고 있으며, 동일한 관찰 지점에서 심화학습이 가능한 학습요소를 갖추고 있다는 점에서 지질 교육적 가치가 큰 것으로 평가되었다. 덕명리 일원은 뛰어난 지질 교육적 가치 이외에도 관광 및 교육 인프라가 잘 갖춰져 있는 만큼 안전한 지질 교육을 위한 학습의 장으로서 역할을 할 것으로 기대된다.

Keywords

Acknowledgement

이 연구는 "고성 국가지질공원 타당성·기초학술조사 및 인증신청 학술용역"으로부터 지원받았으며, 건설적인 조언을 주신 두 분의 심사위원님들과 편집위원님께 감사드립니다.

References

  1. Ahn, K.S., 2013, Potential as a geological field course of Mt. Geumdang located in Gwangju, Korea. Journal of the Korean Earth Science Society, 34(3), 235-248. (in Korean) https://doi.org/10.5467/JKESS.2013.34.3.235
  2. Anderson, R.Y. and Dean, W.E., 1988, Lacustrine varve formation through time. Palaeogeography, Palaeoclimatology, Palaeoecology, 62, 215-235. https://doi.org/10.1016/0031-0182(88)90055-7
  3. Bird, E., 2008, Coastal Geomorphology: An Introduction, Second Edition. John Wiley & Sons, Ltd, Publication, New Jersey, USA, 448 p.
  4. Bluck, B.J., 2011, Structure of gravel beaches and their relationship to tidal range. Sedimentology, 58(4), 994-1006. https://doi.org/10.1111/j.1365-3091.2010.01192.x
  5. Chang, K.H., 1978, Late Mesozoic stratigraphy, sedimentation and tectonics of southeastern Korea (II): With discussion on petroleum possibility. Journal of the Geological Society of Korea, 14, 120-135. (in Korean)
  6. Cheon, Y., Ha, S., Lee, S., and Son, M., 2020, Tectonic evolution of the Cretaceous Gyeongsang Back-arc Basin, SE Korea: Transition from sinistral transtension to strike-slip kinematics. Gondwana Research, 83, 16-35. https://doi.org/10.1016/j.gr.2020.01.012
  7. Chi, J.M., Kim, H.S., Oh, I.S., and Kim, H.C., 1983, Explanatory text of the geological map of Samcheonpo Sheet. Korean Institute of Energy and Resources, Daejeon, Korea. 12 p.
  8. Cho, K.S., Byeon, H.Y., and Kim, C.B., 2002, Development of geological field courses and the effect of field study on the affective domain in science and on achievement of students. Journal of the Korean Earth Science Society, 23(8), 649-658. (in Korean)
  9. Choi, Y.S., Choi, J.R., Kim, C.J., and Choe, S.U., 2017, Understanding of group modeling process with geological field trip applied on social-construction of scientific model: Focusing on constraints. Journal of the Korean Earth Science Society, 38(4), 303-320. (in Korean) https://doi.org/10.5467/JKESS.2017.38.4.303
  10. Chough, S.K. and Sohn, Y.K., 2010, Tectonic and sedimentary evolution of a Cretaceous continental arcbackarc system in the Korean peninsula: New view. Earth-Science Reviews, 101, 225-249. https://doi.org/10.1016/j.earscirev.2010.05.004
  11. Chough, S.K., Kwon, S.T., Ree, J.H., and Choi, D.K., 2000, Tectonic and sedimentary evolution of the Korean peninsula: A review and new view. Earth-Science Reviews, 52, 175-235. https://doi.org/10.1016/S0012-8252(00)00029-5
  12. Clifton, H.E., 2006, A reexamination of facies models for clastic shorelines. In Posamentier, H.W. and Walker, R.G. (eds.), Facies Models Revisited. SEPM Society for Sedimentary Geology, SEPM Special Publication 84, Tulsa, Oklahoma, USA, 293-337.
  13. Collinson, J. and Mountney, N., 2019, Sedimentary Structures. Dunedin Academic Press. Edinburgh, UK, 340 p.
  14. Dumas, S., Arnott, R.W.C., and Southard, J.B., 2005, Experiments on oscillatory-flow and combined-flow bed forms: Implications for interpreting parts of the shallowmarine sedimentary record. Journal of Sedimentary Research, 75(3), 501-513. https://doi.org/10.2110/jsr.2005.039
  15. Duschl, R.A. and Smith, M.J., 2001, Earth science. In Brophy, J. (Ed.), Subject-specific instructional methods and activities (Advances in Research on Teaching, Vol. 8), Emerald Group Publishing Limited, Leeds, 269-290.
  16. Gihm, Y.S., Ko, K., and Lee, B.C., 2020, Occurrence of the lowermost part of the Yucheon Group and its SHRIMP U-Pb ages in Hyeonpoong and Bugok areas. Economic and Environmental Geology, 53(4), 397-411. (in Korean) https://doi.org/10.9719/EEG.2020.53.4.397
  17. Goto, Y. and McPhie, J., 1996, A Miocene basanite peperitic dyke at Stanley, northwestern Tasmania, Australia. Journal of Volcanology and Geothermal Research, 74, 111-120. https://doi.org/10.1016/S0377-0273(96)00043-1
  18. Houck, K.J. and Lockley, M.G., 2006, Life in an active volcanic arc: Petrology and sedimentology of dinosaur track beds in the Jindong Formation (Cretaceous), Gyeongsang Basin, South Korea. Cretaceous Research, 27, 102-122. https://doi.org/10.1016/j.cretres.2005.10.004
  19. Jo, H.R., Rhee, C.W., and Chough, S.K., 1997, Distinctive characteristics of a streamflow-dominated alluvial fan deposit: Sanghori area, Kyongsang Basin (Early Cretaceous), southeastern Korea. Sedimentary Geology, 110, 51-79. https://doi.org/10.1016/S0037-0738(96)00083-8
  20. Kim, G.W. and Lee, K.Y., 2011, Developing web-based virtual geological field trip by using flash panorama and exploring the ways of utilization: A case of Jeju Island in Korea. Journal of the Korean Earth Science Society, 32(2), 212-224. (in Korean) https://doi.org/10.5467/JKESS.2011.32.2.212
  21. Kim, H.G. and Oh, K.H., 2022, The geo-educational values of the geomorphological․ geological landscapes on the southern coast of Goseong-gun, Gyeongnam. The Journal of Korean Island, 34(1), 145-160. (in Korean) https://doi.org/10.26840/JKI.34.1.145
  22. Kim, J.Y. and Wee, S.M., 2021, Development and application of geological field study program in the vicinity of Sangjokam, Goseong-gun, Gyeongsangnamdo. Journal of Learner-Centered Curriculum and Instruction, 21(19), 145-156. (in Korean) https://doi.org/10.22251/jlcci.2021.21.19.145
  23. Kim, M.J., Kim, H.J., and Lim, C.S., 2020, Development of the scientific creativity task for a field trip to botanical garden: Application to science-gifted elementary students. Journal of Korean Elementary Science Education, 39(4), 506-521. (in Korean)
  24. Kong, D.Y, Cho, H.S., Kim, J.H., Yu, Y.W., Jung, S.H., Kim, T.H., Kim, J.S., Jeong, J.O., Kim, K.K., Kwon, C.W., and Son, M., 2018, A petrological study on the formation of geological heritage around Sangjogam County Park, Goseong, Gyeongsangnam-do. MUNHWAJAE: Korean Journal of Cultural Heritage Studies, 51(2), 78-91.
  25. Kusnick, J., 2002, Growing pebbles and conceptual prism: Understanding the source of student misconceptions about rock formation. Journal of Geoscience Education, 50(1), 31-39. https://doi.org/10.5408/1089-9995-50.1.31
  26. Lee, S.Y. and Choi, K.H., 2015, Morphology of shore platforms and sea cliffs controlled by rock strength and tidal range. Journal of the Association of Korean Geographers, 4(2), 241-250. (in Korean) https://doi.org/10.25202/JAKG.4.2.6
  27. Lee, K. and Gihm Y.S., 2023, Downstream changes in floodplain sedimentation and their effects on channel avulsion in stream-dominated alluvial fans: The Cretaceous Duwon Formation in the southern Korean Peninsula. Sedimentary Geology, 456, 106473.
  28. Lee, T.H., Park, K.H., and Yi, K., 2018, Nature and evolution of the Cretaceous basins in the eastern margin of Eurasia: A case study of the Gyeongsang Basin, SE Korea. Journal of Asian Earth Sciences, 166, 19-31. https://doi.org/10.1016/j.jseaes.2018.07.004
  29. Lee, Y.I., Lee, J.I., and Choi, Y.S., 2023, Provenance analysis of the Cretaceous Gyeongsang Basin, SE Korea: A synthesis and tectonic implications for active continental margin in East Asia. Earth-Science Reviews, 238, 104334.
  30. Lockley, M.G., Houck, K., Yang, S.Y., Matsukawa, M., and Lim, S.K., 2006, Dinosaur-dominated footprint assemblages from the Cretaceous Jindong Formation, Hallyo Haesang National Park area, Goseong County, South Korea: Evidence and implications. Cretaceous Research, 27(1), 70-101. https://doi.org/10.1016/j.cretres.2005.10.010
  31. Lutgens, F. and Tarbuck, E., 2018, Essentials of Geology, Pearson, New York, USA, 574 p.
  32. Maker, C.J. and Nielson, A.B., 1996, Curriculum development and teaching strategies for gifted learners, PRO-ED, 8700 Shoal Creek Blvd., Austin, USA. 345 p.
  33. Manner, B.M., 1995, Field studies benefit students and teachers. Journal of Geological Education, 43(2), 128-131. https://doi.org/10.5408/0022-1368-43.2.128
  34. Martin, U. and Nemeth, K., 2007, Blocky versus fluidal peperite textures developed in volcanic conduits, vents and crater lakes of phreatomagmatic volcanoes in Mio/Pliocene volcanic fields of western Hungary. Journal of Volcanology and Geothermal Research, 159, 164-178. https://doi.org/10.1016/j.jvolgeores.2006.06.010
  35. Miall, A.D., 1985, Architectural-element analysis: A new method of facies analysis applied to fluvial deposits. Earth-Science Reviews, 22(4), 261-308. https://doi.org/10.1016/0012-8252(85)90001-7
  36. Nichols, G., 2009, Sedimentology and stratigraphy, Second Edition. Wiley-Blackwell, A John Wiley & Sons, Ltd, Publication, Oxford, 419 p.
  37. Noh, B.S., Ryang, W.H., and Cho, K.S., 2009, The responses of elementary teachers and the development of teaching materials for geological fieldwork in the area of Mai mountain. Journal of the Korean Earth Science Society, 30(7), 869-882. (in Korean) https://doi.org/10.5467/JKESS.2009.30.7.869
  38. Paik, I.S. and Kim, H.J., 2006, Playa lake and sheetflood deposits of the Upper Cretaceous Jindong Formation, Korea: Occurrences and palaeoenvironments. Sedimentary Geology, 187, 83-103. https://doi.org/10.1016/j.sedgeo.2005.12.006
  39. Park, J.M., Ryang, W.H., Cho, K.S., and Kim, S.B., 2009, Development and application of teaching materials for geological fieldwork in the area of Bongwhabong, Buan-gun, Jeonbuk, Korea. Journal of the Korean Earth Science Society, 30(7), 883-896. (in Korean) https://doi.org/10.5467/JKESS.2009.30.7.883
  40. Postma, G. and Nemec, W., 1990, Regressive and transgressive sequences in a raised Holocene gravelly beach, southwestern Crete. Sedimentology, 37(5), 907-920. https://doi.org/10.1111/j.1365-3091.1990.tb01833.x
  41. Rasmussen, H., 2000, Nearshore and alluvial facies in the Sant Llorenc del Munt depositional system: Recognition and development. Sedimentary Geology, 138, 71-98. https://doi.org/10.1016/S0037-0738(00)00144-5
  42. Ridgway, K.D. and DeCelles, P.G., 1993, Stream-dominated alluvial fan and lacustrine depositional systems in Cenozoic strike-slip Basins, Denali fault system, Yukon Territory, Canada. Sedimentology, 40(4), 645-666. https://doi.org/10.1111/j.1365-3091.1993.tb01354.x
  43. Ryu, C.R., 2009, Analysis of fieldtrip-related perception and attitudes of science-talented students: A case of winter school in Korea Earth Science Olympiad, 2007. The Journal of The Korean Earth Science Society, 30(1), 81-95. (in Korean) https://doi.org/10.5467/JKESS.2009.30.1.081
  44. Skilling, I.P., White, J.D., and McPhie, J., 2002, Peperite: A review of magma-sediment mingling. Journal of Volcanology and Geothermal Research, 114, 1-17. https://doi.org/10.1016/S0377-0273(01)00278-5
  45. Squire, R.J. and McPhie, J., 2002, Characteristics and origin of peperite involving coarse-grained host sediment. Journal of Volcanology and Geothermal Research, 114, 45-61. https://doi.org/10.1016/S0377-0273(01)00289-X
  46. Stow, D.A., 2005, Sedimentary rocks in the field: A color guide. Manson Publishing, London, UK, 319 p.
  47. Talling, P.J., Masson, D.G., Sumner, E.J., and Malgesini, G., 2012, Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology, 59(7), 1937-2003. https://doi.org/10.1111/j.1365-3091.2012.01353.x
  48. Tang, C.S., Zhu, C., Cheng, Q., Zeng, H., Xu, J.J., Tian, B.G., and Shi, B., 2021. Desiccation cracking of soils: A review of investigation approaches, underlying mechanisms, and influencing factors. Earth-Science Reviews, 216, 103586.
  49. Toramaru, A. and Matsumoto, T., 2004, Columnar joint morphology and cooling rate: A starch-water mixture experiment. Journal of Geophysical Research Soild Earth, 109, B2.
  50. Twiss, R.J. and Moores, E.M., 2007, Structural Geology, Second Edition. W.H. Freeman, New York, USA, 736 p.