DOI QR코드

DOI QR Code

Chlorophyll contents and expression profiles of photosynthesis-related genes in water-stressed banana plantlets

  • Sri Nanan Widiyanto (School of Life Sciences and Technology, Institut Teknologi Bandung) ;
  • Syahril Sulaiman (School of Life Sciences and Technology, Institut Teknologi Bandung) ;
  • Simon Duve (School of Life Sciences and Technology, Institut Teknologi Bandung) ;
  • Erly Marwani (School of Life Sciences and Technology, Institut Teknologi Bandung) ;
  • Husna Nugrahapraja (School of Life Sciences and Technology, Institut Teknologi Bandung) ;
  • Diky Setya Diningrat (Department of Biology, Faculty of Mathematics and Natural Sciences, Medan State University)
  • Received : 2023.03.12
  • Accepted : 2023.05.23
  • Published : 2023.06.22

Abstract

Water scarcity decreases the rate of photosynthesis and, consequently, the yield of banana plants (Musa spp). In this study, transcriptome analysis was performed to identify photosynthesis-related genes in banana plants and determine their expression profiles under water stress conditions. Banana plantlets were in vitro cultured on Murashige and Skoog agar medium with and without 10% polyethylene glycol and marked as BP10 and BK. Chlorophyll contents in the plant shoots were determined spectrophotometrically. Two cDNA libraries generated from BK and BP10 plantlets, respectively, were used as the reference for transcriptome data. Gene ontology (GO) enrichment analysis was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) and visualized using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway prediction. Morphological observations indicated that water deficiency caused chlorosis and reduced the shoot chlorophyll content of banana plantlets. GO enrichment identified 52 photosynthesis-related genes that were affected by water stress. KEGG visualization revealed the pathways related to the 52 photosynthesisr-elated genes and their allocations in four GO terms. Four, 12, 15, and 21 genes were related to chlorophyll biosynthesis, the Calvin cycle, the photosynthetic electron transfer chain, and the light-harvesting complex, respectively. Differentially expressed gene (DEG) analysis using DESeq revealed that 45 genes were down-regulated, whereas seven genes were up-regulated. Four of the down-regulated genes were responsible for chlorophyll biosynthesis and appeared to cause the decrease in the banana leaf chlorophyll content. Among the annotated DEGs, MaPNDO, MaPSAL, and MaFEDA were selected and validated using quantitative real-time PCR.

Keywords

Acknowledgement

This research was supported by: the Master Degree to Doctoral Scholarship Program for Excellence Undergraduate (PMDSU), Directorate General of Higher Education, Ministry of National Education, Indonesia (2019-2020); and the Program of Research, Community Service, and Innovation (2020-2021), School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia.

References

  1. Backiyarani S, Uma S, Saraswathu MS, Saravanakumar AS, Chandrasekar A (2015) Transcriptome analysis of banana (Musa balbisiana) based on next-generation sequencing technology. Turk J Agric For 39(5):705-717. https://doi.org/10.3906/tar-1406-171
  2. Chen Y, Li C, Yi J, Yang Y, Lei C, Gong M (2020) Transcriptome response to drought, rehydration and re-dehydration in potato. Int J Mol Sci 21(1):159. https://doi.org/10.3390/ijms21010159
  3. Dalal VK, Tripathy BC (2018). Water-stress induced downsizing of light-harvesting antenna complex protects developing rice seedlings from photo-oxidative damage. Sci Rep 8:5955. https://doi.org/10.1038/s41598-017-14419-4
  4. Davey MW, Gudimella R, Harikrishna JA, Sin LW, Khalid N, Keulemans J (2013) A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids. Genomics 14(683):1-20. https://doi.org/10.1186/1471-2164-14-683
  5. Galeano E, Vasconcelos TS, Novais de Oliveira P, Carrer H (2019) Physiological and molecular responses to drought stress in teak (Tectona grandis L.f.). PLoS ONE 14(9):e0221571. https://doi.org/10.1371/journal.pone.0221571
  6. Hu W, Ding Z, Tie W, Yan Y, Liu Y, Wu C, Liu J, Wang J, Peng M, Xu B, Jin Z (2017) Comparative physiological and transcriptomic analyses provide integrated insight into osmotic, cold, and salt stress tolerance mechanisms in banana. Sci Rep 7:e43007. https://doi.org/10.1038/srep43007
  7. Kusdianti, Diningrat DS, Iriawati, Widiyanto SN (2016) P5CS and HSP 81-2 gene expression profile of banana (Musa acuminata) in vitro culture under salt stress condition. J Plant Sci 11(4):91-95. https://doi.org/10.3923/jps.2016.91.95
  8. Li J, Cang Z, Jiao F, Bai X, Zhang D, Zhai R (2017) Influence of drought stress on photosynthetic characteristics and protective enzymes of potato at seedling stage. J Saudi Soc Agric Sci 16(1):82-88. https://doi.org/10.1016/j.jssas.2015.03.001
  9. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2-∆∆CT method. Methods 25(4):402-408. https://doi.org/10.1006/meth.2001.1262
  10. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(550):1-21. https://doi.org/10.1186/s13059-014-0550-8
  11. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15:473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  12. Muthusamy M, Uma S, Backiyarani S, Saraswathi MS, Chandrasekar A (2016) Transcriptomic changes of drought-tolerant and sensitive banana cultivars exposed to drought stress. Front Plant Sci 7:e1609. https://doi.org/10.3389/fpls.2016.01609
  13. Nansamba M, Sibiya J, Tumuhimbise R, Karamura D, Kubiriba J, Karamura E (2020) Breeding banana (Musa spp.) for drought tolerance: A review. Plant Breed 139(4):685-696. https://doi.org/10.1111/pbr.12812
  14. Nayar NM (2010) The Bananas: Botany, Origin, Dispersal. In: Horticultural Reviews Vol. 36, Janick, J. (Ed). Wiley-Blackwell, Hoboken, New Jersey, US. pp 117-164. https://doi.org/10.1002/9780470527238.ch2
  15. Nguyen MK, Shih TH, Lin S-H, Lin J-W, Nguyen HC, Yang ZW, Yang CM (2021) Transcription profile analysis of chlorophyll biosynthesis in leaves of wild-type and chlorophyll b deficient rice (Oryza sativa L.). Agriculture 11:e401. https://doi.org/10.3390/agriculture11050401
  16. Ravi I, Uma S, Vaganan MM, Mustaffa MM (2013) Phenotyping bananas for drought resistance. Front Physiol 4(9):1-15. https://doi.org/10.3389/fphys.2013.00009
  17. Sasi S, Venkatesh J, Daneshi R, Gururani MA (2018) Photosystem II extrinsic proteins and their putative role in abiotic stress tolerance in higher plants. Plants 7(4):100. https://doi.org/10.3390/plants7040100
  18. Sebayang NS, Puspita DE, Basri S (2018) Different planting media in Barangan banana (Musa Acuminata Colla) breeding in Southeast Aceh. Indonesian J Agric Res 1(3):307-316. https://doi.org/10.32734/injar.v1i3.473
  19. Surendar KK, Devi DD, Ravi I, Krishnakumar S, Kumar SR, Velayudham K (2013a) Water stress in banana - A review. Bull Env Pharmacol Life Sci 2(6):1-18. https://bepls.com/may2013/1.pdf
  20. Surendar KK, Devi DD, Ravi I, Jeyakumar P, Velayudham K (2013b) Water stress affects plant relative water content, soluble protein, total chlorophyll content and yield of ratoon banana. Int J Hort 3:96-103. https://doi.org/10.5376/ijh.2013.03.0017
  21. Vergeiner C, Banala S, Krautler B (2013) Chlorophyll breakdown in senescent banana leaves: Catabolism reprogrammed for biosynthesis of persistent blue fluorescent tetrapyrroles. Chem Eur J 19:12294-12305. https://doi.org/10.1002/chem.201301907
  22. Wada S, Takagi D, Miyake C, Makino A, Suzuki Y (2019) Responses of the photosynthetic electron transport reactions stimulate the oxidation of the reaction center chlorophyll of photosystem I P700, under drought and high temperatures in rice. Int J Mol Sci 20(9):2068. https://doi.org/10.3390/ijms20092068
  23. Wang R, Xu Y, Li XG, Shen Y, Wang LX, Xie ZS (2020) Comparison of drought tolerance of banana genotypes. Genet Mol Res 19(2):gmr18544. doi.org/10.4238/gmr18544
  24. Wang Z, Li G, Sun H, Ma L, Guo Y, Zhao Z, Gao H, Mei L (2018) Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biol Open 7(11):bio035279. https://doi.org/10.1242/bio.035279
  25. Widiyanto SB, Inabuy FS, Nugraheni T, Diningrat DS, Carlson JE (2019) Transcriptome analysis of banana plantlets under polyethylene glycol induced drought stress. Unpublished Report, World Class University Program, Research and Community Service Institute, Institut Teknologi Bandung, Bandung, Indonesia
  26. Wintermans JFGM, De Mots A (1965) Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochim Biophys Acta 109(2):448-453. https://doi.org/10.1016/0926-6585(65)90170-6
  27. Zhao Y, Han Q, Ding C, Huang Y, Liao J, Chen T, Feng S, Zhou L, Zhang Z, Chen Y, Yuan S, Yuan M (2020) Effect of low temperature on chlorophyll biosynthesis and chloroplast biogenesis of rice seedlings during greening. Int J Mol Sci 21(4):1390. https://doi.org/10.3390/ijms21041390