• Title/Summary/Keyword: engine performance

Search Result 3,690, Processing Time 0.034 seconds

A Security Log Analysis System using Logstash based on Apache Elasticsearch (아파치 엘라스틱서치 기반 로그스태시를 이용한 보안로그 분석시스템)

  • Lee, Bong-Hwan;Yang, Dong-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.382-389
    • /
    • 2018
  • Recently cyber attacks can cause serious damage on various information systems. Log data analysis would be able to resolve this problem. Security log analysis system allows to cope with security risk properly by collecting, storing, and analyzing log data information. In this paper, a security log analysis system is designed and implemented in order to analyze security log data using the Logstash in the Elasticsearch, a distributed search engine which enables to collect and process various types of log data. The Kibana, an open source data visualization plugin for Elasticsearch, is used to generate log statistics and search report, and visualize the results. The performance of Elasticsearch-based security log analysis system is compared to the existing log analysis system which uses the Flume log collector, Flume HDFS sink and HBase. The experimental results show that the proposed system tremendously reduces both database query processing time and log data analysis time compared to the existing Hadoop-based log analysis system.

Tactics Generation about Anti-submarine using Genetic Algorithm through Oceanography Environmental Change (해양 환경 변화에 따른 유전 알고리즘 기반의 대잠전 전술 생성에 관한 연구)

  • Park, Kang-moon;Shin, Sang-bok;Kim, Seon-jae;Hwang, Jaeryong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.362-368
    • /
    • 2018
  • Making proper judgements in urgent situations facing a submarine at the sea is very critical. This is because the commander's misjudgments could drive the entire ally to destruction in a moment. In order to generate appropriate tactics on behalf of the human commander and to analyze the effectiveness in such emergency situations, studies using intelligent agents and genetic algorithms have been conducted. In this study, inference engine based intelligent agent is adopted to each warship and submarine to generate optimal tactics on the variable environment with genetic algorithms. And we analyze the risk of the alliance according to the performance of the enemy submarine through a simple simulation and generate appropriate tactics using the genetic algorithm. Also generated tactics are evaluated and the results are analyzed to figure out why such results are formed.

Combustion Analysis with CARS Temperature Measurement in a Gas Turbine Combustor (가스터빈 연소기내 CARS 온도측정을 통한 연소해석)

  • Lee, Jong-Ho;Park, Chul-Woong;Han, Yeoung-Min;Ko, Young-Sung;Lee, Su-Yong;Yang, Soo-Seok;Lee, Dae-Sung;Jeon, Chung-Hwan;Chang, Young-June;Shin, Hyun-Dong;Hahn, Jae-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1134-1141
    • /
    • 2003
  • Performance of a gas turbine combustor installed in a test facility has been studied by measuring spatially- and temporally-resolved temperature distributions using multiplex CARS technique. 500 CARS temperatures were determined at each measuring point to obtain a histogram of temperature distribution. Experiments were carried out in the aero-engine combustor sector rig burning standard kerosene fuel. The histograms were obtained around a triple-sector double annular rig running in ground idle conditions, showing features of flow mixing within the rig. The temperature histograms that prove the existence of high temperatures above 1900 K provide us valuable information to improve the design of the combustor structure suppressing NOx generation in turbulent combustion processes. The effects of swirl direction and pre-filmer on gas turbine combustion were investigated. When we installed radial swirls, a large recirculation zone was formed by the fuel module regardless of swirl directions and the pre-filmer installation. It is found that the swirl direction affects the shape of the reverse flow zone, however. Also, an attempt to estimate the flow field and flame structure is made using the histogram of temperature determined with the CARS technique.

Combustion Experiments of a High Pressure Liquid Propellant Thrust Chamber (고압 실물형 연소기의 저압 및 설계점 연소시험)

  • Seo Seonghyeon;Han Yeoung-Min;Moon Il-Yoon;Lee Kwang-Jin;Song Joo-Young;Choi Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.269-273
    • /
    • 2005
  • A practical, 30-tonf-class fullscale thrust chamber has been combustion tested using real propellants for the first time in the domestic technology scene. The very first combustion test was conducted at a low mass flow rate condition for the preliminary assessment of any problems associated with its function and performance while reducing risks from a high chamber pressure never achieved before. A test for the design condition achieved through a low-pressure stage shows stable characteristics of all the static pressures and thrust. Dynamic pressures measured in the manifolds and the chamber did not reveal any distinct wave coupled to a specific frequency and their intensities reside in the allowable range. Moreover, it is encouraging to find no physical failures with a thrust chamber hardware.

  • PDF

A Leverage Strategy of the Defense Export Based on System Thinking (시스템사고를 이용한 한국 방산수출 레버리지 전략)

  • Lee, Sang-Eun;Seo, Hyeok;Jung, Jong-Hee;Yang, Ho-Kyung;Kang, Seok-Joong
    • Journal of the military operations research society of Korea
    • /
    • v.36 no.1
    • /
    • pp.103-121
    • /
    • 2010
  • As a cutting edge technology intensive value-added business, the defense industry is jumping into a new engine of a national growth. Also, the defense industry export is recognized not only as the field to activate the Korean economy but also as an important field to create the national brand value. However, though the consensus on the importance of defense industry export helps achieve the remarkable performance in reality, the rate of increase in the budget for national defence is slowing down gradually, and the investment in R&D is not so big, and there are a lot of drawbacks with the management of core technology and the development of cutting edge weapon system. Accordingly, this thesis tried to find the leverage to make the structure of defense industry export work normally after analyzing the systematical structure of defense industry export to understand its characteristics. Also, through the process to make the leverage a strategy, the thesis tried to present the optimal direction of policy to join the ranks of the advanced countries in defense industry export.

An Implementation of distributed Real-time Location Data Server based on the GALIS Architecture (GALIS 구조 기반 실시간 분산 위치 데이타 서버 구현)

  • Lee, Joon-Woo;Lee, Woon-Ju;Lee, Ho;Nah, Yun-Mook
    • Journal of Korea Spatial Information System Society
    • /
    • v.7 no.1 s.13
    • /
    • pp.53-62
    • /
    • 2005
  • A challenging task in the LBS system engineering is to implement a highly scalable system architecture which can manage moderate-size configurations handling thousands of moving items as well as upper-end configurations handling distributed computing system architecture that consists of multiple data processors, each dedicated to keeping records relevant to a different geographical zone and a different time zone. In this paper, we explain a prototype location data server structuring major components of GALIS by employing the TMO programming scheme, including the execution engine middleware developed to support real-time distributed object programming and real-time distributed computing system design. We present how to generate realistic location sensing reports and how to process such location reports and location-related queries. Some experimental results showing performance factors regarding distributed query processing are also explained.

  • PDF

Evaluation of Corrosion Characteristics on Welding Zone of Leakage SeawaterPipe Welded by Underwater Welding Electrode (수중 용접봉으로 용접한 누수배관 용접부위의 부식 특성 평가)

  • Moon, Kyung-Man;Lee, Sung-Yul;Kim, Yun-Hae;Lee, Myung-Hyoon;Kim, Jin-Gyeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1240-1247
    • /
    • 2008
  • Leakage trouble on the sea water pipeline in engine room is often resulted from a localized corrosion due to severe corrosive environment caused by both high speed and high pressure of sea water flowing through the inner pipe. In addition, when the ship is in stand-by or emergency condition, underwater welding to control the leakage of sea water from a hole of its pipe is very important in an industrial safety point of view. In this study possibility of underwater welding to control leakage of sea water and corrosion property of its welding zone were investigated with the electrochemical methods by parameters of welding methods and welding electrodes when underwater welding is achieved with a such case that sea water is being leaked out with a height at 50mm from a hole of $2.5mm{\emptyset}$ of test pipe. Corrosion resistance of weld metal zone is better than the base metal and its hardness is higher than that of the base metal. However corrosion potential of weld metal zone showed a negative value than that of the base metal, therefore weld metal zone is preferentially corroded rather than the base metal by performance of galvanic cell due to difference of corrosion potential between weld metal zone and base metal. Eventually it is suggested that leakage of sea water is successfully controlled by underwater welding,

Biodiesel: Oil-crops and Biotechnology (바이오디젤 원료 작물 품종 개량과 생명공학기술 응용)

  • Roh, Kyung-Hee;Park, Jong-Sug
    • Applied Biological Chemistry
    • /
    • v.50 no.3
    • /
    • pp.137-146
    • /
    • 2007
  • The substitution of fossil fuels with biofuels has been proposed by the European Union (EU) as part of a strategy to mitigate greenhouse gas emissions from road transport, increase security of energy supply and support the development of rural communities. Vegetable oils and their derivatives (especially methyl esters), commonly referred to as 'biodiesel', are prominent candidates as alternative diesel fuels. They have advanced from being purely experimental fuels to the initial stages of commercialization. They are technically competitive with or offer technical advantages compared to conventional diesel fuel. However, several problems remain including economics, combustions, some emissions, lube oil contamination, and low-temperature properties. Therefore, quality control of fuel-related properties of biodiesel is needed to obtain consistent engine performance by fuel users. The quality of the fuel is affected by the oil composition. Rapeseed oil has been targeted for fuel use because it produces an oil with a close-to-optimum set of fuel characteristics. In this paper we have reviewed past and current efforts, both by traditional seed-breeding methods and by genetic engineering, to modify rapeseed oil quality and yield.

A Study on the Redesign of the Two-Stage Axial Compressor for Helicopter Engines (헬리콥터용 2단 축류압축기의 재설계에 관한 연구)

  • Kim, Jin-Han;Choi, Chang-Ho;Kim, Chul-Taek;Yang, Sooseok;Lee, Daesung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.1 s.10
    • /
    • pp.7-13
    • /
    • 2001
  • In developing a multistage compressor, the stage matching is one of the critical design issues. The mismatching can be often observed even if each stage has been proven good and then used as part of a compression system. A good matching among the stages can be achieved by changing various design parameters (i.e., passage cross sectional areas, blades angles, stagger angles, curvature, solidity, etc.). Therefore, designers need to find out what parameters must be changed and how much. In this study, a method to search the design parameters for optimum stage matching has been used based on an 1-D mathematical model of a compressor, which uses the data obtained from the preliminary test to identify the design parameters. This methodology is applied with a two-stage axial compressor, which was originally designed for a helicopter gas turbine engine. After identifying design parameters using preliminary test data, an optimization process has been employed to achieve the best matching between the stages (i.e., maximum efficiency of the compressor at its operation modes within a given range of the rotor speed under given restrictions for required stall margins and mass flow). 3-D flow calculations have been performed to confirm the usefulness of the corrections based on the 1-D mathematical model. Calculational results agree well with the experimental data in view of the performance characteristics. Some promising results were produced through the methodology proposed in this paper in conjunction with flow calculations.

  • PDF

Analysis of Fast Injection Response Characteristics Between Solenoid and Piezo-Driven Injector (솔레노이드 및 피에조 인젝터의 고속분사 응답성 해석)

  • Jo, In-Su;Lee, Jung-Hyup;Lee, Jin-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.10
    • /
    • pp.971-977
    • /
    • 2012
  • It is well known that the performance of a diesel injector is directly related to the power, emission, and fuel consumption of the diesel combustion engine. In this study, the injection response characteristics of CRDi injectors driven by a solenoid coil and a piezoceramic were investigated by using the AMESim simulation code. Some analytical parameters such as the fuel pressure and hole diameter were considered. From this study, it was shown that the piezo-driven injector had a faster response and had better control capability than the solenoid-driven injector. In addition, it was found that the piezo-driven injector can be utilized more effectively in a multiple injection scheme than a solenoid-driven injector.