Browse > Article

Biodiesel: Oil-crops and Biotechnology  

Roh, Kyung-Hee (Plant Metabolic Engineering Lab, National Institute of Agricultural Biotechnology)
Park, Jong-Sug (Plant Metabolic Engineering Lab, National Institute of Agricultural Biotechnology)
Publication Information
Applied Biological Chemistry / v.50, no.3, 2007 , pp. 137-146 More about this Journal
Abstract
The substitution of fossil fuels with biofuels has been proposed by the European Union (EU) as part of a strategy to mitigate greenhouse gas emissions from road transport, increase security of energy supply and support the development of rural communities. Vegetable oils and their derivatives (especially methyl esters), commonly referred to as 'biodiesel', are prominent candidates as alternative diesel fuels. They have advanced from being purely experimental fuels to the initial stages of commercialization. They are technically competitive with or offer technical advantages compared to conventional diesel fuel. However, several problems remain including economics, combustions, some emissions, lube oil contamination, and low-temperature properties. Therefore, quality control of fuel-related properties of biodiesel is needed to obtain consistent engine performance by fuel users. The quality of the fuel is affected by the oil composition. Rapeseed oil has been targeted for fuel use because it produces an oil with a close-to-optimum set of fuel characteristics. In this paper we have reviewed past and current efforts, both by traditional seed-breeding methods and by genetic engineering, to modify rapeseed oil quality and yield.
Keywords
Biodiesel; oil-crops; Brassica napus; cold stress; oleic acid;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gurr, M. I., Harwood, J. L. and Frayn, K. N. (2002) In Lipid Biochemistry (5th ed.), pp. 13-101. Blackwell Science Ltd, Oxford, UK
2 Rozenaal, A. (1992) Interesterification of fats. Inform 3, 1232-1237
3 Frankel, E. N. (1998) In Lipid Oxidation, The Oily Press Ltd, Dundee, Scotland
4 Gray, J. I. (1978) Measurement of lipid oxidation: a review. Journal of American Oil and Chemist's Society, 55, 539-546   DOI
5 Jang, Y. S., Kim, C. W., Choi, I. H., Oh, Y. B., Jung, B. C., Bang, J. K., Kwon, B. S. and Lee, J. I. (2002) Development of maintainer and Mokpo-CGMS in Oilseed rape (Brasscia napus L.) Korean J. Breed. 34, 163-167
6 Rcker, B. and Rbbelen, G. (1995) Development of high oleic acid rapeseed. In: Rapeseed Today and Tomorrow. Proceedings of 9th International Rapeseed Congress, Vol. 2, pp. 389-391, Cambridge, UK
7 Roxas, V. P., Smith, R. K. Jr., Allen, E. R., and Allen R. D. (1997) Overexpression of glutathione S-transferase/ glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat. Biotechnol. 15, 988- 991   DOI   ScienceOn
8 Kishitani, S., Takanami, T., Suzuki, M., Oikawa, M., and Yokoi, S. (2000) Compatibility of glycinebetaine in rice plants: evaluation using transgenic rice plants with a gene for peroxisomal betaine aldehyde dehydrogenase from barley. Plant Cell Environ. 23, 107-114   DOI   ScienceOn
9 Moon, B. Y., Higashi, S., Gombos, Z. and Murata, N. (1995) Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc. Natl. Acad. Sci. USA. 92, 6219- 6223
10 Yokoi, S., Higashi, S., Kishitani, S., Murata, N. and Toriyama, K. (1998) Introduction of the cDNA for Arabidopsis glycerol-3-phosphate acyltransferase(GPAT) confers unsaturation of fatty acids and chilling tolerance of photosynthesis on rice. Mol. Breed. 4, 269-275   DOI   ScienceOn
11 Kodama, H., Hamada, T., Horiguchi, G., Nishimura, M. and Iba, K. (1994) Genetic enhancement of cold tolerance by expression of a gene for chloroplast .-3 fatty acid desaturase in transgenic tobacco. Plant Physiol. 105, 601-605   DOI
12 Jaglo-Ottosen, K. R., Gilmour, S. J., Zarka, D. G., Schabenberger, O. and Thomashow, M. F. (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280, 104-106   DOI   ScienceOn
13 Hamada, T., Kodama, H., Takeshita, K., Utsumi, H. and Iba, K. (1998) Characterization of transgenic tobacco with an increased .-linolenic acid level. Plant Physiol. 118, 591-598   DOI   ScienceOn
14 Shimada, T., Wakita, Y., Otani, M. and Iba, K. (2000) Modification of fatty acid composition in rice plants by transformation with a tobacco microsomal .-3 fatty acid desaturase gene (NtFAD3). Plant Biotechnol. 17, 43-48
15 Ishizaki-Nishizawa, O., Fujii, T., Azuma, M., Sekiguchi, K. and Murata, N. (1996) Low-temperature resistance of higher plants is significantly enhanced by a nonspecific cyanobacterial desaturase. Nat. Biotechnol. 14, 1003- 1006   DOI   ScienceOn
16 Meyer, K., Keil, M. and Naldreff, M. J. (1999) A leucine-rich repeat protein of carrot that exhibits antifreeze activity. FEBS Lett. 447, 171-178   DOI   ScienceOn
17 Sen Gupta, A., Webb, R. P., Holaday, A. S. and Allen, R. D. (1993) Overexpression of superoxide dismutase protects plants from oxidative stress. Plant Physiol. 103, 1067-1073   DOI
18 Allen, J. C. (1955) Determination of unsaturation. Journal of American Oil and Chemists' Society 32, 671- 674   DOI
19 Erickson, D. R. and List, G. R. (1985) Fat degradation reactions. In Bailey's Industrial Oil and Fat Products, (3rd ed.) John Wiley & Sons, Inc., Toronto, Canada, pp. 275-277
20 Rakow, G. and Raney, P. (2001) Low saturated fat Brassica napus. GCIRC Technical Meeting, B18, Poznan, Poland
21 Knutzon, D. S., Thompson, G. A., Radke, S. E., Johhson, W. B., Knauf, V. C. and Kridl, J. C. (1992) Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proc. Natl. Acad. Sci. USA. 89, 2624-2628
22 Prankl, H. and Wrgetter, M. (1995) Standardisation of biodiesel on a European level. Proceedings 3rd European Motor Biofuels Forum, Brussels, Belgium
23 Park, J. S., Choung, M. G., Kim, J. B., Kim, J. B., Bae, S. C., Roh, K. H., Kim, Y. H., Cheon, C. I., Sung, M. K., and Cho, K. J. (2007) Genes up-regulated during red coloration in UV-B irradiated lettuce leaves. Plant Cell Rep. 26, 507-517   DOI
24 Nourredini, H., Teoh, B. C. and Clements, L. D. (1992b) Viscositites of vegetable oils and fatty acids. Journal of American Oil and Chemists' Society, 69, 1189-1191   DOI
25 Daun, J. K. (1984) Composition and use of canola seed, oil and meal. Cereal Foods World, 29, 291-296
26 Stoutjesdijk, P. A., Hurlstone, C., Singh, S. P. and Green, A. G. (1999) Genetic manipulation for altered oil quality in Brassica. In New Horizons for an Old Crop. Proceedings of 10th International Rapeseed Congress, pp. 26-29, Wratten, N. and Salisbury, P. A., Canberra. Australia
27 Daun, J. K. and Adolphe, D. F. (1997) A revision to the canola definition. Bulletin of GCIRC, 14, 134-141
28 Jang, Y. S., Choi, I. H., Oh, Y. B., Cho, S. Y., Chong, D. H. and Oh, H. J. (1998) A new early-maturing, flower of large size and the use of sightseeing rapeseed variety 'Tammiyuchae'. J. Indus. Crop Sci. 40, 67-70
29 Fan, Y., Liu, B., Wang, H., Wang, S. and Wang, J. (2002) Cloning of antifreeze protein gene from carrot and its influence on cold tolerance in transgenic tobacco plants. Plant Cell Rep. 21, 296-301   DOI
30 Murata, N., Ishizaki-Nishizawa, O., Higashi, S., Hayashi, H. and Tasaka, Y. (1992) Genetically engineered alteration in the chilling sensitivity of plants. Nature 356, 710-713   DOI
31 Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17, 287-291   DOI   ScienceOn
32 Rakow, G., Relf-Eckstein, J., Raney, J. P. and Gugel, R. (1999) Development of high yielding disease resistant, yellow-seeded Brassica napus. In: New Horizons for an Old Crop. Proceedings of 10th International Rapeseed Congress, Canberra, Australia
33 Iba, K. (2002) Acclimative response to temperature stress in higher plant: Approaches of gene engineering for temperature tolerance. Annu. Rev. Plant Biol., 53, 225-245   DOI
34 Griffith, M. and Yaish, M. W. F. (2004) Antifreeze proteins in overwintering plants: a tale of two activities. Trends in Plant Science 9, 399-405   DOI   ScienceOn
35 Sen Gupta, A., Heinen, J. L., Holaday, A. S., Burke, J. J. and Allen, R. D. (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA. 90, 1629-1633
36 Bengtsson, L., Von Hoften, A. and LooF, B. (1972) Botany of rapeseed. In: Rapeseed Cultivation, Composition, Processing and Utilization. pp. 36-48. Elsevier Publishing Company. London
37 DeBonte, L. R. and Hitz, W. D. (1998) Canola oil having increased oleic acid and decreased linolenic acid content. US Patent No. 5850026
38 Tamminen, I., Mkel, P., Heino, P., and Palva, E. T. (2001) Ectopic expression of ABI3 gene enhances freezing tolerance in response to abscisic acid and low temperature in Arabidopsis thaliana. Plant J. 25, 1-8   DOI   ScienceOn
39 McKersie, B. D., Murnaghan, J., Jones, K. S. and Bowely, S. R. (2000) Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance. Plant Physiol. 122, 1427-1437   DOI
40 Auld, D., Heikkinen, M. K., Erickson, D. A., Sernyk, L. and Romero, E. (1992) Rapeseed mutants with reduced levels of polyunsaturated fatty acid levels and increased levels of oleic acid. Crop Sci. 32, 657-662   DOI
41 Jang, Y. S., Kim, C. W., Choi, I. H., Oh, Y. B., Jung, B. C. and Park, J. H. (2002) Method of seed production of F1 hybrids in Brasscia napus L. Korean J. Breed. 34, 158-162
42 Hildebrand, D. F. and Grayburn, S. W. (1999) Fatty acid alteration by a 9 desaturase in transgenic plant tissue. US Patent No. 5,866,789
43 Kodama, H., Horiguchi, G., Nishiuchi, T., Nishimura, M. and Iba, K. (1995) Fatty acid desaturation during chilling acclimation is one of the factors involved in conferring low-temperature tolerance to young tobacco leaves. Plant Physiol. 107, 1177-1185   DOI
44 Jang, Y. S., Kim, C. W., Choi, I. H., Oh, Y. B., Jung, B. C. and Kim, S. T. (2002) Yield performance and local adaptability of rapeseed F1 hybrids. Korean J. Breed. 34, 41-45
45 Kim, J. C., Lee, S. H., Cheong, Y. H., Yoo, D-. M., and Lee, S. I. (2001) A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J. 25, 247-259   DOI   ScienceOn
46 Saurer, F. D. and Kramer, J. K. G. (1983) The problems associated with the feeding of high erucic acid rapeseed oils and some fish oils to experimental animals. In: High and Low Erucic Acid Rapeseed Oils Production, Usage, Chemistry, and Toxicological Evaluation. pp. 254- 292. Academic Press, Toronto
47 Nitske, W. R. and Wilson, C. M. (1965) In Rudolph Diesel, pioneer of the age of power, University of Oklahoma Press, Norman, Oklahoma
48 Formo, M. W. (1979) Physical properties of fats and fatty acids. In Bailey's Industrial Oil and Fats, John Wiley & Sons, Inc., Toronto, Canada, pp. 177-232
49 Murakami, Y., Tsuyama, M., Kobyayshi, Y., Kodama, H. and Iba, K. (2000) Trienoic fatty acids and plant tolerance of high temperature. Science 28, 476-479
50 Worrall, D., Elias, L., Ashford, D., Smallwood, M. Sidebottom, C. Lillford, P. Telford, J. Holt, C. and Bowles, D. (1998) A carrot leucine-rich repeat protein that inhibits ice recrystallization. Science 282, 115-117   DOI   ScienceOn
51 McKersie, B. D., Bowely, S. R. and Jones, K. S. (1999) Winter survival of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol. 119, 839-847   DOI   ScienceOn
52 Wolter, F. P., Schmidt, R. and Heinz, E. (1992) Chilling sensitivity of Arabidopsis thaliana with genetically engineered membrane lipids. EMBO J. 11, 4685-4692
53 Frondel, M. and Peters, J. (2007) Biodiesel: A new Oildorado? Energy Policy 35, 1675-1684   DOI   ScienceOn