• Title/Summary/Keyword: engine intake system

Search Result 348, Processing Time 0.038 seconds

Fire Examples Study of Intake and Exhaust System, Alternator Tuning and Inflow of Inflammables on Exhaust Part in a Car (자동차 흡배기장치, 발전기 튜닝 및 배기측 인화성 물질 유입에 관련된 화재사례 연구)

  • Lee, Il Kwon;Kook, Chang Ho;Suh, Moon Won;You, Chang Bae;Youm, Kwang Wook;Lim, Chun Moo;Jung, Dong Hwa
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.5
    • /
    • pp.47-51
    • /
    • 2014
  • This paper is to analyze and study the fire examples in respect of intake and exhaust, alternator tuning and inflow of inflammables on exhaust part in a car. In the first example, the driver diverted the intake and exhaust system for tuning of a car. Stopping a car to rest for moment, the flammable styrofoam scrap go into exhaust pipe that installed with exhaust manifold newly. It certified the fact that catched fire gradually, furthermore enlarged the fire by leaking fuel. In the second example, the driver enlarged the generator performance to divert the audio system in side room., it knew the fact that the electric wiring connected with generator gave the cause of outbreak a fire by overheating. In the third example, the serviceman replaced the engine oil using funnel-shaped, he put the a bottle of plastic pat onto engine cover carelessly. Consequentially, it found the fire occurrence in the engine room. Therefore, the driver never divert the intake and exhaust and generator construction of a car abnormally. Also, repairing and inspecting a car, the serviceman have a care to not occur the fire by inflammables.

A Study on the Combustion Characteristics and the Control on the Fuel Flow Rate of LPG Intake Port Injection Engine (흡기포트 분사식 LPG 엔진의 연료량 제어 및 연소 특성에 관한 연구)

  • 김우석;이종화;정창현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.31-39
    • /
    • 2000
  • In this paper, characteristics of a port injection type LPG fuel system were investigated to adopt the system to a spark ignition engine through rig test. Engine combustion characteristics for limited conditions and the precise control method of LPG fuel supply were also studied. As a basic experiment, the effects and the relationships of parameters such as orifice area, fuel delivery pressure, fuel temperature and flow coefficient were established. From this, one dimensional compressible flow equation can be applied to control gaseous fuel flow rate by setting pressure difference between vaporizer and manifold to a certain range, for example about 1.2 bar in a naturally aspirated engine. The combustion analysis results of LPG engine were also compared with those of gasoline engine according to spark timing and load change. At part load and stoichiometric condition, the MBT spark timing of LPG fueled engine is retarded by 2$^{\circ}$ - 4$^{\circ}$CA compared to that of gasoline engine. On the contrary, the spark timing of LPG fueled engine can be advanced by 5$^{\circ}$- 10$^{\circ}$ CA at WOT, which results from higher Octane Number and burned fraction of LPG fuel compared to gasoline.

  • PDF

Investigation of In-Cylinder Phenomena in a SI Engine (가솔린 엔진의 연소실내 현상 연구)

  • Kim, K.S.
    • Journal of ILASS-Korea
    • /
    • v.3 no.1
    • /
    • pp.10-18
    • /
    • 1998
  • To investigate the in-cylinder phenomena in a SI engine with 3 valves and pent-roof type combustion chamber, flow fields, fuel distributions, and flame propagations were measured in a single c!'tinder visualized engine. Flow fields were visualized by PTV system during the intake and compression process. Fuel distributions were measured by PLIF at the various engine conditions including the cold and hot engine conditions and the effect of air-shrouded injector on the fuel distribution was investigated also. In addition, flame propagation patterns were characterized.

  • PDF

A Study on the Effects of EGR ratio on Engine Performance and Emission in a 4 Cylinder 4 Cycle Gasoline Engine (4실린더 4사이클 가솔린 기관에서 EGR율이 기관성능 및 유해배출물에 미치는 영향에 관한 연구)

  • 김태훈;조진호
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.3-15
    • /
    • 1993
  • A multi-cylinder four cycle spark ignition engine equipped with on exhaust gas recirculation(EGR) system to reduce nitric oxide emission and to improve fuel consumption rate has been comprehensively simulated In a computer program including intake and exhaust manifolds. To achieve these goals, this program was tested against experiments performed on a standard production four cylinder four cycle gasoline engine with EGR system. As EGR rate Increased, the maximum temperature of combustion chamber and NO omission concentration decreased under each driving condition. But the emission concentration of CO didn't change much through whole district in spite of the increase of EGR rate. Fuel consumption rate improved under each driving condition according to the increased of EGR rate until 10 percent EGR rate. Therefore the degree of EGR depend not only on the NO emission but also on the economy and the engine performance criteria of the engine.

  • PDF

Characteristics of the Air Flow Variation by Throttle Step Change in a Gasoline Engine (스로틀 개폐에 따른 가솔린 엔진의 비정상상태 유량변화 특성)

  • 박경석;고상근;노승탁;이종화
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.92-101
    • /
    • 1996
  • In a gasoline engine, the characteristics of air flow is very important not only for the design of the intake system geometry bout also for the accurate measurement of the induction air mass. In this study, an air flow rate measurement of the induction air mass. In this study, an air flow rate measurement was conducted by using the hot wire flow meter at the upstream of the intake port and the throttle. At the upstream of the throttle, the overshoot phenomena of the air flow rate by fast throttle opening were analyzed with choked flow. At the upstream of the intake port, the cylinder variation of the air flow rate and the difference between fast throttle opening and closing were showed during the unsteady state by the throttle step change. The results of this study can be used for the design of the throttle valve geometry and cylinder by cylinder control.

  • PDF

Effect of Water Induction on the Performance and Exhaust Emissions in a Diesel Engine (II)

  • Ryu, Kyunghyun;Oh, Youngtaig
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1640-1647
    • /
    • 2004
  • This study was to investigate the effects of water induction through the air intake system on the characteristics of combustion and exhaust emissions in an IDI diesel engine. The fuel injection timing was also controlled to investigate a method for the simultaneous reduction of smoke and NOx when water was injected into the combustion chamber. The formation of NOx was significantly suppressed by decreasing the gas peak temperature during the initial combustion process because the water played a role as a heat sink during evaporating in the combustion chamber, while the smoke was slightly increased with increased water amount. Also, NOx emission was significantly decreased with increase in water amount. A simultaneous reduction in smoke and NOx emissions was obtained when water was injected into the combustion chamber by retarding more 2$^{\circ}C$A of the fuel injection timing than without water injection.

Weight Reduction in automobile Design Through Axiomatic Approach -Developed of Integrated Air Fuel Module(I)- (공리적 접근을 이용한 자동차 경량화 설계 - 통합 흡기시스템의 개발(I))

  • 문용락;차성운;윤풍영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.106-114
    • /
    • 1999
  • Today, one of the most important objective in automobile development is to reduce the weight of automobile . The eventual depletion of petroleum and environmental regulations brought considerable emphasis to this area on increasing fuel efficiency. Conventional intake air-fuel system is very heavy because it is composed of numerous parts. The bulky size caused increase in the amount of metal being used to build automobile chassis and this became a serious weight problem. The size also caused difficulties in optimization of fuel supply system which in turn decreased engine efficiency. Currently , there are efforts to integrate several intake system modules into one. The purpose of this paper is to evaluate the directions of such development.

  • PDF

Multi-Stage Turbocharger Gasoline IC Engine Simulation for HALE UAV (고고도 장기체공 무인기 적용을 위한 다단 터보차저 가솔린 엔진 시스템 시뮬레이션)

  • Kang, Seungwoo;Bae, Choongsik;Lim, Byeungjun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.101-107
    • /
    • 2019
  • This study conducted a simulation to observe the performance of a multi-turbocharged gasoline internal combustion engine for a high-altitude long-endurance unmanned aerial vehicle (HALE UAV). The WAVE 1-D engine simulation software from Ricardo was used for the engine system modeling and simulation. The specifications of a 2.4-L four cylinder gasoline engine from commercial vehicles and maps of commercial vehicle turbochargers were applied to the multi-stage turbocharged engine system model. Three turbochargers and intercoolers were installed in series for the appropriate intake of pressure for the gasoline engine at a high altitude of 60,000 ft. There was one wastegate for the turbochargers. The operability of the engine system was analyzed via this simulation model.

An Investigation on Combustion Characteristics of The Closed Cycle Diesel Engine (폐회로 디젤엔진의 연소특성에 관한 고찰)

  • 박신배
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.60-69
    • /
    • 2000
  • In order to obtain underwater or underground power sources, the closed cycle diesel engine is operated in the non air-breathing circuit system where the major species of the working fluid include oxygen, argon, and recycled exhaust gas. In the present study, the closed cycle diesel engine is designed to operate at the intake pressure between 2 and 3 bar. For operating in the open-cycle and closed-cycle situations, experimental apparatus using this diesel engine is made with ACAP as data acquisition system. In open, semi-open, and closed cycle modes, the predicted p-$\theta$ and P-V are compared with load bank power. Computation have been performed for wide range of major experimental parameters such as the specific fuel and oxygen concentrations, fuel conversion efficiency and polytropic exponent, IMEP and maximum cylinder pressure.

  • PDF

Study for Failure Examples of Injector, Idle Speed Actuator and Gasket in LPi System Vehicle (LPi 시스템 자동차의 인젝터, 공회전 액추에이터 및 개스킷 고장사례 연구)

  • Lee, Il-Kwon;Cho, Seung-Hyun;Kim, Han-Goo;Kim, Seung-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.48-53
    • /
    • 2012
  • The purpose of this paper studies the failure cases including with system of liquefied phase injection in liquified petroleum gas vehicle. The first case, resulting with inspection the injector of LPG, it occasionally certified the injection damage phenomenon that the fuel efficiency(km/l) was decreased to 5% by carbon deposit with injector hole when the driver operates the vehicle. The second case, it certified the interference phenomenon of air flow with carbon deposit in ISA system control for idle speed of engine and throttle body suppling air into engine. As a result, the fuel efficiency was decreased 7%. The third case, the outer air during intake stroke was intermittently flowed in this gasket gap because of weaken adhesion power phenomenon for cylinder block by intake manifold gasket tearing. Consequentially, it certified the decrease for fuel efficiency to 3% by risen the amount of fuel injection as the air inflow quantity. These failure examples reduced the power performance of engine and the fuel efficiency of vehicle. It have to minimize of failure phenomenon preparing through quality management.