• 제목/요약/키워드: energy-dispersive x-ray spectroscopy (eds)

검색결과 301건 처리시간 0.027초

Experimental design approach for ultra-fast nickel removal by novel bio-nanocomposite material

  • Ince, Olcay K.;Aydogdu, Burcu;Alp, Hevidar;Ince, Muharrem
    • Advances in nano research
    • /
    • 제10권1호
    • /
    • pp.77-90
    • /
    • 2021
  • In the present study, novel chitosan coated magnetic magnetite (Fe3O4) nanoparticles were successfully biosynthesized from mushroom, Agaricus campestris, extract. The obtained bio-nanocomposite material was used to investigate ultra-fast and highly efficient for removal of Ni2+ ions in a fixed-bed column. Chitosan was treated as polyelectrolyte complex with Fe3O4 nanoparticles and a Fungal Bio-Nanocomposite Material (FBNM) was derived. The FBNM was characterized by using X-Ray Diffractometer (XRD), Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS), Fourier Transform Infrared spectra (FTIR) and Thermogravimetric Analysis (TGA) techniques and under varied experimental conditions. The influence of some important operating conditions including pH, flow rate and initial Ni2+ concentration on the uptake of Ni2+ solution was also optimized using a synthetic water sample. A Central Composite Design (CCD) combined with Response Surface Modeling (RSM) was carried out to maximize Ni2+ removal using FBNM for adsorption process. A regression model was derived using CCD to predict the responses and analysis of variance (ANOVA) and lack of fit test was used to check model adequacy. It was observed that the quadratic model, which was controlled and proposed, was originated from experimental design data. The FBNM maximum adsorption capacity was determined as 59.8 mg g-1. Finally, developed method was applied to soft drinks to determine Ni2+ levels. Reusability of FBNM was tested, and the adsorption and desorption capacities were not affected after eight cycles. The paper suggests that the FBNM is a promising recyclable nanoadsorbent for the removal of Ni2+ from various soft drinks.

초고온가스로용 Alloy 617의 불순물 함유 헬륨/공기 중에서 고온부식 특성 (High Temperature Corrosion of Alloy 617 in Impure Helium and Air for Very High-Temperature Gas Reactor)

  • 정수진;이경근;김동진;김대종
    • Corrosion Science and Technology
    • /
    • 제12권2호
    • /
    • pp.102-112
    • /
    • 2013
  • A very high-temperature gas reactor (VHTR) is one of the next generation nuclear reactors owing to its safety, high energy efficiency, and proliferation-resistance. Heat is transferred from the primary helium loop to the secondary helium loop through an intermediate heat exchanger (IHX). Under VHTR environment Alloy 617 is being considered a candidate Ni-based superalloy for the IHX of a VHTR, owing to its good creep resistance, phase stability and corrosion resistance at high temperature. In this study, high-temperature corrosion tests were carried out at 850 - $950^{\circ}C$ in air and impure helium environments. Alloy 617 specimens showed a parabolic oxidation behavior for all temperatures and environments. The activation energy for oxidation was 154 kJ/mol in helium environment, and 261 kJ/mol in an air environment. The scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDS) results revealed that there were a Cr-rich surface oxide layer, Al-rich internal oxides and depletion of grain boundary carbide after corrosion test. The thickness and depths of degraded layers also showed a parabolic relationship with the time. A corrosion rate of $950^{\circ}C$ in impure helium was higher than that in an air environment, caused by difference in the outer oxide morphology.

Pd이 삽입된 TiO2 광촉매의 광학 특성 및 페놀 분해 성능 평가 (Optical Properties and Phenol Destruction Performance of Pd-inserted TiO2 Photocatalysts)

  • 도정연;김태호;심환석;정하민;최재훈;강미숙
    • 공업화학
    • /
    • 제28권5호
    • /
    • pp.547-553
    • /
    • 2017
  • 본 연구는 $TiO_2$ 골격에 Pd을 삽입시켰을 때 나타나는 광 촉매 성능의 차이에 초점을 두고, $TiO_2$와 x mol% $Pd-TiO_2$(x = 0.25, 0.5, 0.75 그리고 1.0)의 5가지 촉매를 제안하였다. 전형적인 졸-겔 방법을 사용하여 촉매를 합성하고 각 촉매의 페놀 광 분해 성능을 평가하였다. XRD, TEM, SEM/EDS, UV/Vis 분광법, 광 발광 분광법 등을 이용하여 촉매의 물리화학적 특성을 확인하였고, 광 발광 분광법 및 광 전류 측정으로 광학적 특성을 확인하였다. Pd 이온을 첨가하면 촉매의 밴드 갭이 감소하고, 광 생성된 전자와 정공 사이의 전하 분리가 쉽게 발생한다. 결과적으로, 0.75 mol% $Pd-TiO_2$ 촉매상의 페놀 광 분해 성능은 순수한 $TiO_2$보다 3배 더 높았는데, 이는 광 촉매 반응 중에 Pd 이온이 전자캡쳐 역할을 하여 일어난 결과로 여겨진다.

치과 임플란트 고정체의 여러 가지 제조공정과정에 따른 표면특성 (Surface Characteristics of Dental Implant Fixture with Various Manufacturing Process)

  • 정용훈;문영필;이충환;유진우;최한철
    • 한국표면공학회지
    • /
    • 제43권1호
    • /
    • pp.17-24
    • /
    • 2010
  • In this study, surface characteristics of dental implant fixture with various manufacturing process have been researched using electrochemical methods. The dental implant fixture was selected with 5 steps by cleaning, surface treatment and sterilization with same size and screw structure; the 1st step-machined surface, 2nd step-cleaned by thinner and prosol solution, 3th step-surface treated by RBM (resorbable blasting media) method, 4th step-cleaned and dried, 5th step-sterilized by gamma-ray. The electrochemical behavior of dental implant fixture has been evaluated by using potentiostat (EG&G Co, 2273A) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The corrosion surface was observed using field-emission scanning electron microscopy (FE-SEM) and energy dispersive x-ray spectroscopy (EDS). The step 5 sample showed the cleaner and rougher surface than step 3 sample. The step 5 sample of implant fixture treated by RBM and gamma sterilization showed the low corrosion current density compared to others. Especially, the step 3 sample of implant fixture treated by RBM was presented the lowest value of corrosion resistance and the highest value of corrosion current density. The step 3 sample showed the low value of polarization resistance compared to other samples. In conclusion, the implant fixture treated with RBM and gamma sterilization has the higher corrosion resistance, and corrosion resistance depends on the step of manufacturing process.

원심주조법에 의한 TiAl 합금의 제조 및 미세구조 분석 (Fabrication of TiAl alloy by centrifugal casting and its microstructure)

  • 류정호;이호준;조현수;팽종민;박종범;이정일
    • 한국결정성장학회지
    • /
    • 제27권5호
    • /
    • pp.229-234
    • /
    • 2017
  • 본 연구에서는 자동차 터보차저(turbo charger)용 터빈휠을 제조하기 위하여 고속원심주조법을 이용하여 TiAl 합금을 주조하였다. 여러 가지 조성의 주형을 사용하여 주조결함이 최소화 되는 최적의 몰드 조건을 찾고자 하였으며, 주조된 TiAl 합금의 결정구조와 미세조직을 고찰하였다. TiAl 샘플의 XRD 분석 결과 ${\gamma}$-TiAl 상과 ${\alpha}_2-Ti_3Al$ 상으로 구성되어 있음을 확인하였으며, 광학현미경과 FE-SEM 분석을 통하여 TiAl 샘플은 6-fold 및 4-fold 대칭성으로 이루어진 두 개의 수지상(dendrite) 형태로 이루어져 있음을 확인할 수 있었다. 또한 샘플의 단면에서 표면과 가까운 지점과 내부에서 측정한 원소함량의 차이를 확인할 수 있었으며, 마이크로비커스 경도계를 이용하여 표면에서 $50{\mu}m$ 미만의 영역에서 경도상승 영역 alpha-case 층이 형성되었음을 확인하였다.

$CO_2$ 레이저 빔에 의한 $Si_3N_4$ 세라믹의 반응연구 (Surface Transform of $Si_3N_4$ Ceramics Irradiated by $CO_2$ Laser Beam)

  • 김선원;이제훈;서정;조해용;김관우
    • 한국레이저가공학회지
    • /
    • 제9권2호
    • /
    • pp.23-30
    • /
    • 2006
  • Silicon Nitride $(Si_3N_4)$, which is widely used in a variety of applications, is hard-to-machine due to its high hardness. At high temperature (e.g. above $1000^{\circ}C)$, however, the machinability can be greatly improved. In this work, we used a $CO_2$ laser with a high absorptivity to $Si_3N_4$ of 0.9 to locally heat the surface of a rotating $Si_3N_4$ rod on a lathe. In order to examine the effects of the laser-assisted heating on hardness, an $Si_3N_4$ rod is heated to temperatures from 900 to $1800^{\circ}C$ and is rotated at speeds from 440-900 rpm in experiments. When the rod is naturally cooled to room temperature, we measured the Vickers hardness (Hv); and observed the surface of HAZ using a scanning electron microscopy (SEM). Energy dispersive spectroscopy (EDS) was used for ingredient analysis. Results showed that when heated at $1600^{\circ}C$, the hardness of $Si_3N_4$ decreased from 1500 Hv to 1000 Hv. Also, in order to predict the depth of HAZ, we numerically analyzed the laser-assisted heating of $Si_3N_4$.

  • PDF

$CO_2$ 레이저 빔에 의한 $Si_3N_4$ 세라믹의 반응연구 (Surface transform of $Si_3N_4$ ceramics irradiated by $CO_2$ laser beam)

  • 김선원;이제훈;서정;조해용;김관우
    • 한국레이저가공학회:학술대회논문집
    • /
    • 한국레이저가공학회 2006년도 춘계학술발표대회 논문집
    • /
    • pp.16-24
    • /
    • 2006
  • Silicon Nitride ($Si_3N_4$), which is widely used in a variety of applications, is hard-to-machine due to its high hardness. At high temperature (e.g. above $1000^{\circ}C$), however, the machinability can be greatly improved. In this work, we used a $CO_2$ laser with a high absorptivity to $Si_3N_4$ of 0.9 to locally heat the surface of a rotating $Si_3N_4$ rod on a lathe. In order to examine the effects of the laser-assisted heating on hardness, an $Si_3N_4$ md is heated to temperatures from 900 to $1800^{\circ}C$ and is rotated at speeds from 440-900 rpm in experiments. When the rod is naturally cooled to room temperature, we measured the Victors hardness (Hv): and observed the surface of HAZ using a scanning electron microscopy (SEM). Energy dispersive spectroscopy(EDS) was used for ingredient analysis. Results showed that when heated at $1600^{\circ}C$, the hardness of $Si_3N_4$ decreased from 1500 Hv to 1000 Hv. Also, in order to predict the depth of HAZ, we numerically analyzed the laser-assisted heating of $Si_3N_4$.

  • PDF

백색 5K Au-Ag-In 합금재의 인듐 첨가량에 따른 물성 변화 (Properties of the White 5K Au-Ag-In Alloys with Indium Contents)

  • 송정호;송오성
    • 한국재료학회지
    • /
    • 제27권7호
    • /
    • pp.381-385
    • /
    • 2017
  • In order to replace 14K white gold alloys, the properties of 5K white gold alloys (Au20-Ag80) were investigated by changing the contents of In (0.0-10.0 wt%). Energy dispersive X-ray spectroscopy (EDS) was used to determine the precise content of alloys. Properties of the alloys such as hardness, melting point, color difference, and corrosion resistance were determined using Vickers Hardness test, TGA-DTA, UV-VIS-NIR-colorimetry, and salt-spray tests, respectively. Wetting angle analysis was performed to determine the wettability of the alloys on plaster. The results of the EDS analysis confirmed that the Au-Ag-In alloys had been fabricated with the intended composition. The results of the Vickers hardness test revealed that each Au-Ag-In alloy had higher mechanical hardness than that of 14K white gold. TGA-DTA analysis showed that the melting point decreased with an increase in the In content. In particular, the alloy containing 10.0 wt% In showed a lower melting temperature (> $70^{\circ}C$) than the other alloys, which implied that alloys containing 10.0 wt% In can be used as soldering materials for Au-Ag-In alloys. Color difference analysis also revealed that all the Au-Ag-In alloys showed a color difference of less than 6.51 with respect to 14K white gold, which implied a white metallic color. A 72-h salt-spray test confirmed that the Au-AgIn alloys showed better corrosion resistance than 14K white gold alloys. All Au-Ag-In alloys showed wetting angle similar to that of 14K white gold alloys. It was observed that the 10.0 wt% In alloy had a very small wetting angle, further confirming it as a good soldering material for white metals. Our results show that white 5K Au-Ag-In alloys with appropriate properties might be successful substitutes for 14K white gold alloys.

18K 레드 골드 정함량 솔더의 In 첨가에 따른 물성변화 (Properties of the 18K Red Gold Solder Alloys with Indium Contents)

  • 송정호;송오성
    • 한국재료학회지
    • /
    • 제28권2호
    • /
    • pp.89-94
    • /
    • 2018
  • The properties of 18 K red gold solder alloys were investigated by changing the content of In up to 10.0 wt% in order to replace the hazardous Cd element. Cupellation and energy dispersive X-ray spectroscopy (EDS) were used to check the composition of each alloy, and FE-SEM and UV-VIS-NIR-Colormeter were employed for microstructure and color characterization. The melting temperature, hardness, and wetting angle of the samples were determined by TGA-DTA, the Vickers hardness tester, and the Wetting angle tester. The cupellation result confirmed that all the samples had 18K above 75.0wt%-Au. EDS results showed that Cu and In elements were alloyed with the intended composition without segregation. The microstructure results showed that the amount of In increased, and the grain size became smaller. The color analysis revealed that the proposed solders up to 10.0 wt% In showed a color similar to the reference 18 K substrate like the 10.0 wt% Cd solder with a color difference of less than 7.50. TGA-DTA results confirmed that when more than 5.0 wt% of In was added, the melting temperature decreased enough for the soldering process. The Vickers hardness result revealed that more than 5.0 wt% In solder alloys had greater hardness than 10.0 wt% Cd solder, which suggested that it was more favorable in making a wire type solder. Moreover, all the In solders showed a lower wetting angle than the 10.0 wt% Cd solder. Our results suggested that the In alloyed 18 K red gold solders might replace the conventional 10.0 wt% Cd solder with appropriate properties for red gold jewelry soldering.

AI 이온 주입된 p-type 4H-SiC에 형성된 Ni/AI 오믹접촉의 전기 전도 특성 (Conduction Properties of NitAI Ohmic Contacts to AI-implanted p-type 4H-SiC)

  • 주성재;송재열;강인호;방욱;김상철;김남균;이용재
    • 한국전기전자재료학회논문지
    • /
    • 제22권9호
    • /
    • pp.717-723
    • /
    • 2009
  • Ni/Al ('/' denotes deposition sequence) contacts were deposited on Al-implanted 4H-SiC for ohmic contact formation, and the conduction properties were characterized and compared with those of Ni-only contacts. The thicknesses of the Ni and Al thin film were 30 nm and 300 nm, respectively, and the films were sequentially deposited bye-beam evaporation without vacuum breaking. Rapid thermal anneal (RTA) temperature was varied as follows : $840^{\circ}C$, $890^{\circ}C$, and $940^{\circ}C$. The specific contact resistivity of the Ni contact was about $^{\sim}2\;{\pm}\;10^{-2}\;{\Omega}{\cdot}cm^2$, However, with the addition of Al overlayer, the specific contact resistivity decreased to about $^{\sim}2\;{\pm}\;10^{-4}\;{\Omega}{\cdot}cm^2$, almost irrespective of RTA temperature. X-ray diffraction (XRD) analysis of the Ni contact confirmed the existence of various Ni silicide phases, while the results of Ni/Al contact samples revealed that Al-contaning phases such as $Al_3Ni$, $Al_3Ni_2$, $Al_4Ni_3$, and $Ab_{3.21}Si_{0.47}$ were additionally formed as well as the Ni silicide phases. Energy dispersive spectroscopy (EDS) spectrum showed interfacial reaction zone mainly consisting of Al and Si at the contact interface, and it was also shown that considerable amounts of Si and C have diffused toward the surface. This indicates that contact resistance lowering of the Ni/Al contacts is related with the formation of the formation of interfacial reaction zone containing Al and Si. From these results, possible mechanisms of contact resistance lowering by the addition of Al were discussed.