Browse > Article
http://dx.doi.org/10.12989/anr.2021.10.1.077

Experimental design approach for ultra-fast nickel removal by novel bio-nanocomposite material  

Ince, Olcay K. (Department of Gastronomy and Culinary Arts, Faculty of Fine Arts, Design and Architecture, Munzur University)
Aydogdu, Burcu (Department of Mechanical Engineering, Faculty of Engineering, Munzur University)
Alp, Hevidar (Rare Earth Elements Application and Research Center, Munzur University)
Ince, Muharrem (Rare Earth Elements Application and Research Center, Munzur University)
Publication Information
Advances in nano research / v.10, no.1, 2021 , pp. 77-90 More about this Journal
Abstract
In the present study, novel chitosan coated magnetic magnetite (Fe3O4) nanoparticles were successfully biosynthesized from mushroom, Agaricus campestris, extract. The obtained bio-nanocomposite material was used to investigate ultra-fast and highly efficient for removal of Ni2+ ions in a fixed-bed column. Chitosan was treated as polyelectrolyte complex with Fe3O4 nanoparticles and a Fungal Bio-Nanocomposite Material (FBNM) was derived. The FBNM was characterized by using X-Ray Diffractometer (XRD), Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS), Fourier Transform Infrared spectra (FTIR) and Thermogravimetric Analysis (TGA) techniques and under varied experimental conditions. The influence of some important operating conditions including pH, flow rate and initial Ni2+ concentration on the uptake of Ni2+ solution was also optimized using a synthetic water sample. A Central Composite Design (CCD) combined with Response Surface Modeling (RSM) was carried out to maximize Ni2+ removal using FBNM for adsorption process. A regression model was derived using CCD to predict the responses and analysis of variance (ANOVA) and lack of fit test was used to check model adequacy. It was observed that the quadratic model, which was controlled and proposed, was originated from experimental design data. The FBNM maximum adsorption capacity was determined as 59.8 mg g-1. Finally, developed method was applied to soft drinks to determine Ni2+ levels. Reusability of FBNM was tested, and the adsorption and desorption capacities were not affected after eight cycles. The paper suggests that the FBNM is a promising recyclable nanoadsorbent for the removal of Ni2+ from various soft drinks.
Keywords
Agaricus campestris; $Fe_3O_4$ nanoparticles; bionano-composite material; nickel; fixed-bed column;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Qu, J., Song, T., Liang, J., Bai, X., Li, Y., Wei, Y., Huang, S., Dong, L. and Jin, Y. (2019), "Adsorption of lead (II) from aqueous solution by modified Auricularia matrix waste: A fixed-bed column study", Ecotoxicol. Environ. Saf., 169, 722-729. https://doi.org/10.1016/j.ecoenv.2018.11.085.   DOI
2 Serdar, O., Pala, A., Ince, M. and Onal, A. (2019), "Modelling cadmium bioaccumulation in Gammarus pulex by using experimental design approach", Chem. Ecol., 35(10), 922-936. https://doi.org/10.1080/02757540.2019.1670814.   DOI
3 Shanmugapriya, A., Ramammurthy, R., Munusamy, V. and Parapurath, S.N. (2011), "Optimization of ceric ammonium nitrate initiated graft copolymerization of acrylonitrile onto chitosan", J. Water Resour. Prot., 3(6), 380-386. https://doi.org/10.4236/jwarp.2011.36048.   DOI
4 Sharma, Y.C. and Srivastava, V. (2010), "Separation of Ni (II) ions from aqueous solutions by magnetic nanoparticles", J. Chem. Eng. Data., 55, 1441-1442. https://doi.org/10.1021/je900619d.   DOI
5 Sharma, R. and Singh, B. (2013), "Removal of Ni (II) ions from aqueous solutions using modified rice straw in a fixed bed column", Bioresour. Technol., 146, 519-524. https://doi.org/10.1016/j.biortech.2013.07.146.   DOI
6 Kadirvelu, K., Thamaraiselvi, K. and Namasivayam, C. (2001), "Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from Coirpith", Sep. Purif. Technol., 124(3), 497-505. https://doi.org/10.1016/S1383-5866(01)00149-6.   DOI
7 Kaplan Ince, O., Ince, M., Yonten, V. and Goksu, A. (2017), "A food waste utilization study for removing Lead(II) from drinks", Food Chem., 214, 637-643. https://doi.org/10.1016/j.foodchem.2016.07.117.   DOI
8 Kaplan Ince, O., Ince, M. and Onal, A. (2018), "Response Surface modeling for Pb(II) removal from alcoholic beverages using natural clay: Process optimization with Box-Behnken experimental design and determination by electrothermal AAS", At. Spectrosc., 39, 242-250.   DOI
9 Katsou, E., Malamis, S., Haralambous, K.J. and Loizidou, M. (2010), "Use of ultrafiltration membranes and aluminosilicate minerals for nickel removal from industrial wastewater", J. Membr. Sci., 360(1-2), 234-249. https://doi.org/10.1016/j.memsci.2010.05.020.   DOI
10 Landaburu-Aguirre, J., Pongracz, E., Peramaki, P. and Keiski, R.L. (2010), "Micellar-enhanced ultrafiltration for the removal of cadmium and zinc: Use of response surface methodology to improve understanding of process performance and optimization", J. Hazard. Mater., 180, 524-534. https://doi.org/10.1016/j.jhazmat.2010.04.066.   DOI
11 Lee, S.Y. and Harris, M.T. (2006), "Surface modification of magnetic nanoparticles capped by oleic acids: Characterization and colloidal stability in polar solvents", J. Coll. Interf. Sci., 293, 401-408. https://doi.org/10.1016/j.jcis.2005.06.062.   DOI
12 Li, G., Jiang, Y., Huang, K., Ding, P. and Chen, J. (2008), "Preparation and properties of magnetic Fe3O4-chitosan nanoparticles", J. Alloys Compd., 466, 451-456. https://doi.org/10.1016/j.jallcom.2007.11.100.   DOI
13 Sharma, Y.C., Srivastava, V., Weng, C.H. and Upadhyay, S.N. (2009), "Removal of Cr (VI) from wastewater by adsorption on iron nanoparticles", Can. J. Chem. Eng., 87, 921-929. https://doi.org/10.1002/cjce.20230.   DOI
14 Shen, Y.F., Tang, J., Nie, Z.H., Wang, Y.D., Ren, Y. and Zuo, L. (2009), "Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification", Sep. Purif. Technol., 68, 312-319. https://doi.org/10.1016/j.seppur.2009.05.020.   DOI
15 Tsega, M. and Dejene, F.B. (2017), "Influence of acidic pH on the formulation of TiO2 nanocrystalline powders with enhanced photoluminescence property", Heliyon, 3(2), 1-16. https://doi.org/10.1016/j.heliyon.2017.e00246.   DOI
16 Ahmed, R.A. and Fekry, A.M. (2013), "Preparation and characterization of a nanoparticles modified chitosan sensor and its application for the determination of heavy metals from different aqueous media", Int. J. Electrochem. Sci., 8, 6692-6708.
17 Silva, V.A.J., Andrade, P.L., Silva, M.P.C., Bustamante, D.A., Valladares, L.D.L.S. and Albino Aguiar, J. (2013), "Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides", J. Magn. Magn. Mater., 343, 138-143. https://doi.org/10.1016/j.jmmm.2013.04.062.   DOI
18 Smara, A., Delimi, R., Chainet, E. and Sandeaux, J. (2007), "Removal of heavy metals from diluted mixtures by a hybrid ion-exchange/electrodialysis process", Sep. Purif. Technol., 57, 103-110. https://doi.org/10.1016/j.seppur.2007.03.012.   DOI
19 Supraja, N., Dhivya, J., Prasad, T.N.V.K.V. and David, E. (2018), "Synthesis, characterization and dose dependent antimicrobial and anticancerous efficacy of phycogenic (Sargassum muticum) silver nanoparticles against breast cancer cells (MCF 7) cell line", Adv. Nano Res., Int. J., 6(2), 183-200. https://doi.org/10.12989/anr.2018.6.2.183.   DOI
20 Teja, A.S. and Koh, P.Y. (2009), "Synthesis, properties, and application of magnetic iron oxide nanoparticles", Progr. Cryst. Growth Charact. Mater., 55, 22-45. https://doi.org/10.1016/j.pcrysgrow.2008.08.003.   DOI
21 Liu, Z.L., Wang, H.B., Lu, Q.H., Du, G.H., Peng, L., Du, Y.Q., Zhang, S.M. and Yao, K.L. (2004), "Synthesis and characterization of ultrafine well-dispersed magnetic nanoparticle", J. Magn. Magn. Mater., 283(2-3), 258-262. https://doi.org/10.1016/j.jmmm.2004.05.031.   DOI
22 Miralles, N., Valderrama, C., Casas, I., Martinez, M. and Florido, A. (2010), "Cadmium and lead removal from aqueous solution by grape stalk wastes: Modeling of a fixed-bed column", J. Chem. Eng. Data, 55, 3548-3554. https://doi.org/10.1021/je100200w.   DOI
23 Liu, J., Liu, W., Wang, Y., Xu, M. and Wang, B. (2016), "A novel reusable nanocomposite adsorbent, xanthated Fe3O4-chitosan grafted onto graphene oxide, for removing Cu (II) from aqueous solutions", Appl. Surf. Sci., 367, 327-334. https://doi.org/10.1016/j.apsusc.2016.01.176.   DOI
24 Mak, S.Y. and Chen, D.H. (2005), "Binding and sulfonation of poly (acrylic acid) on iron oxide nanoparticles: A novel, magnetic, strong acid cation nano-adsorbent", Macromol. Rapid Comm., 26, 1567-1571. https://doi.org/10.1002/marc.200500397.   DOI
25 Malarkodi, C., Rajeshkumar, S., Paulkumar, K., Gnana Jobitha, G., Vanaja, M. and Annadurai, G. (2013), "Biosynthesis of semiconductor nanoparticles by using sulfur reducing bacteria Serratia nematodiphila", Adv. Nano Res., Int. J., 1(2), 83-91. https://doi.org/10.12989/anr.2013.1.2.083.   DOI
26 Mohan, D., Sarswat, A., Singh, V.K., Alexandre-Franco, M. and Pittman Jr., C.U. (2011), "Development of magnetic activated carbon from almond shells for trinitrophenol removal from water", Chem. Eng. J., 172, 1111-1125. https://doi.org/10.1016/j.cej.2011.06.054.   DOI
27 Mohsen-Nia, M., Montazeri P. and Modarress, H. (2007), "Removal of Cu2+ and Ni2+ from wastewater with a chelating agent and reverse osmosis processes", Desalination, 217, 276-281. https://doi.org/10.1016/j.desal.2006.01.043.   DOI
28 Wang, Z., Liu, X., Lv, M. and Meng, J. (2010), "A new kind of mesoporous Fe7Co3/carbon nanocomposite and its application as magnetically separable adsorber", Mater. Lett., 64(10), 1219-1221. https://doi.org/10.1016/j.matlet.2010.02.055.   DOI
29 Alp, H., Ince, M., Kaplan Ince, O. and Onal, A. (2019), "Adsorptive removal of Eriochrome Black-T using Agaricus campestris: Parameters optimization with response surface methodology", Desalination Water Treat., In Press.
30 Alizadeh, B., Delnavaz, M. and Shakeri, A. (2018), "Removal of Cd(II) and phenol using novel cross-linked magnetic EDTA/chitosan/TiO2 nanocomposite", Carbohydr. Polym., 181, 675-683. https://doi.org/10.1016/j.carbpol.2017.11.095.   DOI
31 Asgari, S., Fakhari, Z. and Berijani, S. (2014), "Synthesis and characterization of Fe3O4 magnetic nanoparticles coated with carboxymethyl chitosan grafted sodium methacrylate", J. Nanostruct., 4(1), 55-63.
32 Zinadini, S., Zinatizadeh, A.A., Rahimi, M., Vatanpour, V., Zangeneh, H. and Beygzadeh, M. (2014), "Novel high flux antifouling nanofiltration membranes for dye removalcontaining carboxymethyl chitosan coated Fe3O4 nanoparticles", Desalination, 349, 145-154. https://doi.org/10.1016/j.desal.2014.07.007.   DOI
33 Yuwei, C. and Jianlong, W. (2011), "Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu(II) removal", Chem. Eng. J., 168(1), 286-292. https://doi.org/10.1016/j.cej.2011.01.006.   DOI
34 Zhou, J., Wu, W., Caruntu, D., Yu, M.H., Martin, A., Chen, J.F., O'Connor, C.J. and Zhou, W.L. (2007), "Synthesis of porous magnetic hollow silica nanospheres for nanomedicine application", J. Phys. Chem. C, 111(47), 17473-17477. https://doi.org/10.1021/jp074123i.   DOI
35 Zhou, S., Li, Y., Cui, F., Jia, M., Yang, X., Wang, Y., Xie, L., Zhang, Q. and Hou, Z. (2014), "Development of multifunctional folate-poly (ethylene glycol) chitosan-coated Fe3O4 nanoparticles for biomedical applications", Macromol. Res., 22, 58-66. https://doi.org/10.1007/s13233-014-2008-y.   DOI
36 Volesky, B. (2001), "Detoxification of metal-bearing effluents: biosorption for the next century", Hydrometallurgy, 59(2-3), 203-216. https://doi.org/10.1016/S0304-386X(00)00160-2.   DOI
37 Bhatnagar, A. and Minocha, A.K. (2010), "Biosorption optimization of nickel removal from water using Punica granatum peel waste", Colloids Surf. B Biointerf., 76, 544-548. https://doi.org/10.1016/j.colsurfb.2009.12.016.   DOI
38 Bakraouy, H., Souabi, S., Digua, K., Dkhissi, O., Sabar, M. and Fadil, M. (2017), "Optimization of the treatment of an anaerobic pretreated landfill leachate by a coagulation-flocculation process using experimental design methodology", Process Saf. Environ. Prot., 109, 621-630. https://doi.org/10.1016/j.psep.2017.04.017.   DOI
39 Balaz, M., Balazova, L., Kovacova, M., Daneu, N., Salayova, A., Bedlovicova, Z. and Tkacikova, L. (2019), "The relationship between precursor concentration and antibacterial activity of biosynthesized Ag nanoparticles", Adv. Nano Res., Int. J., 7(2), 125-134. https://doi.org/10.12989/anr.2019.7.2.125.   DOI
40 Bhagawati, D., Thakur, S. and Karak, N. (2016), "Castor oil based hyperbranched polyester/bitumen modified fly ash nanocomposite", Adv. Nano Res., Int. J., 4(1), 15-29. https://doi.org/10.12989/anr.2016.4.1.015.   DOI
41 Ding, Y., Shen, S.Z., Sun, H., Sun, K., Liu, F., Qi, Y. and Yan, J. (2015), "Design and construction of polymerized-chitosan coated Fe3O4 magnetic nanoparticles and its application for hydrophobic drug deliver", Mater. Sci. Eng. C, 48, 487-498. https://doi.org/10.1016/j.msec.2014.12.036.   DOI
42 Boujelben, N., Bouzid, J. and Elouear, Z. (2009), "Adsorption of nickel and copper onto natural iron oxide-coated sand from aqueous solutions: Study in single and binary systems", J. Hazard. Mater., 163(1), 376-382. https://doi.org/10.1016/j.jhazmat.2008.06.128.   DOI
43 Chen, B., Zhao, H., Chen, S., Long, F., Huang, B., Yang, B. and Pan, X. (2019), "A magnetically recyclable chitosan composite adsorbent functionalized with EDTA for simultaneous capture of anionic dye and heavy metals in complex wastewater", Chem. Eng. J., 356, 69-80. https://doi.org/10.1016/j.cej.2018.08.222.   DOI
44 Chen, X., Zhang, Z., Li, X. and Shi, C. (2006), "Hollow magnetite spheres: Synthesis, characterization, and magnetic properties", Chem. Phys. Lett., 422, 294-298. https://doi.org/10.1016/j.cplett.2006.02.082.   DOI
45 Chu, K.H. (2004), "Improved fixed bed models for metal biosorption", Chem. Eng. J., 97, 233-239. https://doi.org/10.1016/S1385-8947(03)00214-6.   DOI
46 Denkhaus, E. and Salnikow, K. (2002), "Nickel essentiality, toxicity, and carcinogenicity", Crit. Rev. Oncol. Hematol., 42(1), 35-56. https://doi.org/10.1016/S1040-8428(01)00214-1.   DOI
47 Elbialy, N.S., Fathy, M.M. and Khalil, W.M. (2014), "Preparation and characterization of magnetic gold nanoparticles to be used as doxorubicin nanocarriers", Phys. Med., 30(7), 843-848. https://doi.org/10.1016/j.ejmp.2014.05.012.   DOI
48 Esalah, J. and Husein, M.M. (2008), "Removal of heavy metals from aqueous solutions by precipitation-filtration using novel organo-phosphorus ligands", Sep. Sci. Technol., 43, 3461-3475. https://doi.org/10.1080/01496390802219661.   DOI
49 Fonseca, B., Teixeira, A., Figueiredo, H. and Tavares, T. (2009), "Modelling of the Cr (VI) transport in typical soils of the north of Portugal", J. Hazard. Mater., 167, 756-762. https://doi.org/10.1016/j.jhazmat.2009.01.049.   DOI
50 Eticha, T. and Hymete, A. (2014), "Health risk assessment of heavy metals in locally produced beer to the population in Ethiopia", J. Bioanal. Biomed., 6, 65-68. https://doi.org/10.4172/1948-593X.1000114.   DOI
51 Garg, K.U., Kaur, M.P., Garg, V.K. and Sud, D. (2008), "Removal of nickel (II) from aqueous solutionby adsorption on agriculture waste biomass using a response surface methodological approach", Bioresour. Technol., 99(5), 1325-1331. https://doi.org/10.1016/j.biortech.2007.02.011.   DOI
52 Gu, H., Xu, K., Xu, C. and Xu, B. (2006), "Biofunctional magnetic nanoparticles for protein separation and pathogen detection", Chem. Commun., 9, 941-949. https://doi.org/10.1039/B514130C.   DOI
53 Mondal, A., Mondal, A. and Mukherjee D. (2015), "Roomtemperature synthesis of cobalt nanoparticles and their use as catalysts for Methylene Blue and Rhodamine-B dye degradation", Adv. Nano Res., Int. J., 3(2), 67-79. https://doi.org/10.12989/anr.2015.3.2.067.   DOI
54 Guo, X., Du, B., Wei, Q., Yang, J., Hu, L., Yan, L. and Xu, W. (2014), "Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) from contaminated water", J. Hazard Mater., 278, 211-220. https://doi.org/10.1016/j.jhazmat.2014.05.075.   DOI
55 Haddad, P.S., Martins, T.M., D'Souza-Li, L., Li, L.M., Metze, K., Adam, R.L., Knobel, M. and Zanchet, D. (2008), "Structural and morphological investigation of magnetic nanoparticles based on iron oxides for biomedical applications", Mater. Sci. Eng. C, 28(4), 489-494. https://doi.org/10.1016/j.msec.2007.04.014.   DOI
56 Hanafiah, M.A.K.M., Zakaria, H. and Ngah, W.S.W. (2010), "Base treated cogon grass (imperata cylindrica) as an adsorbent for the removal of Ni (II): Kinetic, isothermal and fixed-bed column studies", Clean Soil Air Water, 38, 248-256. https://doi.org/10.1002/clen.200900206.   DOI
57 Mondal, M., Dutta, M. and De, S. (2017), "A novel ultrafiltration grade nickel iron oxide doped hollow fiber mixed matrix membrane: Spinning, characterization and application in heavy metal removal", Sep. Purif. Technol., 188, 155-166. https://doi.org/10.1016/j.seppur.2017.07.013.   DOI
58 Pacheco, S., Medina, M., Valencia, F. and Tapia, J. (2006), "Removal of inorganic mercury from polluted water using structured nanoparticles", J. Environ. Eng. ASCE., 132, 342-349. https://doi.org/10.1061/(ASCE)0733-9372(2006)132:3(342).   DOI
59 Pala, A., Serdar, O., Ince, M. and Onal, A. (2019), "Modeling approach with Box-Behnken design for optimization of Pb bioaccumulation parameters in Gammarus pulex (L., 1758)", At. Spectrosc., 40, 98-103.   DOI
60 Padmavathy, V., Vasudevan, P. and Dhingra, S.C. (2003), "Biosorption of nickel (II) ions on Baker's yeast", Process Biochem., 38(10), 1389-1395. https://doi.org/10.1016/S0032-9592(02)00168-1.   DOI
61 Pan, B.C., Meng, F.W., Chen, X.Q., Pan, B.J., Li, X.T., Zhang, W.M., Zhang, X., Chen, J.L., Zhang, Q.X. and Sun, Y. (2005), "Application of an effective method in predicting breakthrough curves of fixed-bed adsorption onto resin adsorbent", J. Hazard Mater., 124, 74-80. https://doi.org/10.1016/j.jhazmat.2005.03.052.   DOI
62 Panneerselvam, P., Morad, N. and Tan, K.A. (2011), "Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel (II) from aqueous solution", J. Hazard Mater., 186(1), 160-168. https://doi.org/10.1016/j.jhazmat.2010.10.102.   DOI
63 Hepziba Suganthi, S. and Kandasamy, R. (2017), "A novel single step synthesis and surface functionalization of iron oxide magnetic nanoparticles and thereof for the copper removal from pigment industry effluent", Sep. Purif. Technol., 188, 458-467. https://doi.org/10.1016/j.seppur.2017.07.059.   DOI
64 Hritcu, D., Popa, M.I., Popa, N., Badescu, V. and Balan, V. (2009), "Preparation and characterization of magnetic chitosan nanospheres", Turk. J. Chem., 33, 785-796.
65 Hu, J., Chen, G. and Lo, I.M.C. (2006), "Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: Performance and mechanism", J. Environ. Eng., 132(7), 702-715. https://doi.org/10.1061/(ASCE)0733-9372(2006)132:7(709).   DOI
66 Ince, M. and Kaplan Ince, O. (2019a), "Application of response surface methodological approach to optimize removal of Cr ions from industrial wastewater", At. Spectrosc., 40, 91-97.   DOI
67 Hu, P., Yu, L., Zuo, A., Guo, C. and Yuan, F. (2009), "Fabrication of monodisperse magnetite hollow spheres", J. Phys. Chem. C, 113, 900-906. https://doi.org/10.1021/jp806406c.   DOI
68 Ince, M. (2014), "Comparision of Low-cost and eco-friendly adsorbent for adsorption of Ni(II)", At. Spectrosc., 35, 223-233.   DOI
69 Ince, M. and Kaplan Ince, O. (2017), "Box-Behnken design approach for optimizing removal of copper from wastewater using a novel and green adsorbent", At. Spectrosc., 38, 200-207.   DOI
70 Ince, M. and Kaplan Ince, O. (2019b), "Heavy metal removal techniques using response surface methodology: Water/wastewater treatment", IntechOpen, 2019, 88915. https://doi.org/10.5772/intechopen.88915.   DOI
71 Ince, M., Kaplan Ince, O., Asam, E. and Onal, A. (2017), "Using food wastes biomass as effective adsorbents in water and wastewater treatment for Cu(II) removal", At. Spectrosc., 38, 142-148.   DOI
72 Punjabi, K., Mehta, S., Yedurkar, S., Jain, R., Mukherjee, S., Kale, A. and Deshpande, S. (2018), "Extracellular synthesis of silver nanoparticle by Pseudomonas hibiscicola - mechanistic approach", Adv. Nano Res., Int. J., 6(1), 81-92. https://doi.org/10.12989/anr.2018.6.1.081.   DOI
73 Qin, B., Luo, H., Liu, G., Zhang, R., Chen, S., Hou, Y. and Luo, Y. (2012), "Nickel ion removal from wastewater using the microbial electrolysis cell", Bioresour. Technol., 121, 458-461. https://doi.org/10.1016/j.biortech.2012.06.068.   DOI