DOI QR코드

DOI QR Code

Surface Characteristics of Dental Implant Fixture with Various Manufacturing Process

치과 임플란트 고정체의 여러 가지 제조공정과정에 따른 표면특성

  • Jeong, Yong-Hoon (Department of Dental Materials & Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University) ;
  • Moon, Young-Pil (Department of Dental Materials & Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University) ;
  • Lee, Chung-Hwan (Department of Prosthodontics, School of Dentistry, Chosun University) ;
  • Yu, Jin-Woo (Shingyeong University) ;
  • Choe, Han-Cheol (Department of Dental Materials & Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University)
  • 정용훈 (조선대학교 치의학전문대학원 치과재료학교실 및 생체재료나노계면활성화센터) ;
  • 문영필 (조선대학교 치의학전문대학원 치과재료학교실 및 생체재료나노계면활성화센터) ;
  • 이충환 (조선대학교 치의학전문대학원 보철학교실) ;
  • 유진우 (신경대학교) ;
  • 최한철 (조선대학교 치의학전문대학원 치과재료학교실 및 생체재료나노계면활성화센터)
  • Published : 2010.02.28

Abstract

In this study, surface characteristics of dental implant fixture with various manufacturing process have been researched using electrochemical methods. The dental implant fixture was selected with 5 steps by cleaning, surface treatment and sterilization with same size and screw structure; the 1st step-machined surface, 2nd step-cleaned by thinner and prosol solution, 3th step-surface treated by RBM (resorbable blasting media) method, 4th step-cleaned and dried, 5th step-sterilized by gamma-ray. The electrochemical behavior of dental implant fixture has been evaluated by using potentiostat (EG&G Co, 2273A) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The corrosion surface was observed using field-emission scanning electron microscopy (FE-SEM) and energy dispersive x-ray spectroscopy (EDS). The step 5 sample showed the cleaner and rougher surface than step 3 sample. The step 5 sample of implant fixture treated by RBM and gamma sterilization showed the low corrosion current density compared to others. Especially, the step 3 sample of implant fixture treated by RBM was presented the lowest value of corrosion resistance and the highest value of corrosion current density. The step 3 sample showed the low value of polarization resistance compared to other samples. In conclusion, the implant fixture treated with RBM and gamma sterilization has the higher corrosion resistance, and corrosion resistance depends on the step of manufacturing process.

Keywords

References

  1. D. M. Brunette, P. Tengvall, M. Textor, P. Thomsen, Titanium in Medicine, Springer, Berlin (2001).
  2. A. Balfour, R. Gray, J. Prosthet. Dent., 73 (1995) 36. https://doi.org/10.1016/S0022-3913(05)80270-7
  3. P. Binon, Implant Dentistry, 5 (1996) 235. https://doi.org/10.1097/00008505-199600540-00002
  4. W. G. Kim, C. H. Lee, C. H. Chung, H. C. Choe, J. Kor. Inst. Surf. Eng., 43(1) (2010) In press.
  5. S. Hobo, E. Ichida, L. T. Garcia, Osseointegration and Occlusal Rehabilitation. Quintessence Int., Tokyo (1989).
  6. H. Hamanaka, Titanium and Titanium Alloys: Dental Materials of Preference in the 21th Century. in: Proceedings of the Fifth International Symposium on Titanium in Dentistry, Society for Titanium Alloys in Dentistry, (2001) 1.
  7. L. R. Rubin, Biomaterials in Reconstructive Surgery. C. V. Mosby, St. Louis (1983).
  8. D. D Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee, Y. F. Missirlis, Biometer. Res., 32 (2001) 166.
  9. Z. Schwarts, K. Kieswetter, D. D. Dean, B. D. Boyan, J. Periodontal Res., 32 (1997) 166. https://doi.org/10.1111/j.1600-0765.1997.tb01399.x
  10. B. Feng, J. Y. Chen, S. K. Qi, L. He, J. Z. Zhao, X. D. Zhang, J. Mater. Sci. Mater. Med., 13 (2002) 457. https://doi.org/10.1023/A:1014737831371
  11. B. Kasemo, J. Lausmaa, Metal Selection and Surface Characteristics. Quintessence, Chicago, (1985) 99.
  12. A. F. Recum, Biomaterials, 9 (1990) 297.
  13. A. K. Shukla, R. Balasubramaniam, S. Bharagava, J. Alloys Comp., 24 (2005) 144.
  14. K. Lee, H. C. Choe, Y. M. Ko, The J. Korean Res. Soc. Dent. Mater., 35 (2008) 285.
  15. N. Ibris, J. C. M. Rosca, J. Electro. Chem., 526 (2002) 53. https://doi.org/10.1016/S0022-0728(02)00814-8
  16. E. Obayashi, T. J. Wang, H. Doi, T. Yoneyama, H. Hamanaka, Mater Sci.:Mater. Med., 9 (1998) 567. https://doi.org/10.1023/A:1008909408948
  17. D. M. Brunette, P. Tengvall, M. Textor, P. Thomsen, Titanium in Medicine. Engineering Materials, Springer, (2001).
  18. R. R. Winston, N. D. Greene, Corros. Sci., 9 (1969) 755. https://doi.org/10.1016/S0010-938X(69)80081-8