DOI QR코드

DOI QR Code

High Temperature Corrosion of Alloy 617 in Impure Helium and Air for Very High-Temperature Gas Reactor

초고온가스로용 Alloy 617의 불순물 함유 헬륨/공기 중에서 고온부식 특성

  • Jung, Sujin (Nuclear Materials Division, Korea Atomic Energy Research Institute) ;
  • Lee, Gyeong-Geun (Nuclear Materials Division, Korea Atomic Energy Research Institute) ;
  • Kim, Dong-Jin (Nuclear Materials Division, Korea Atomic Energy Research Institute) ;
  • Kim, Dae-Jong (Nuclear Materials Division, Korea Atomic Energy Research Institute)
  • 정수진 (한국원자력연구원 원자력재료개발부) ;
  • 이경근 (한국원자력연구원 원자력재료개발부) ;
  • 김동진 (한국원자력연구원 원자력재료개발부) ;
  • 김대종 (한국원자력연구원 원자력재료개발부)
  • Received : 2012.02.20
  • Accepted : 2013.04.25
  • Published : 2013.04.15

Abstract

A very high-temperature gas reactor (VHTR) is one of the next generation nuclear reactors owing to its safety, high energy efficiency, and proliferation-resistance. Heat is transferred from the primary helium loop to the secondary helium loop through an intermediate heat exchanger (IHX). Under VHTR environment Alloy 617 is being considered a candidate Ni-based superalloy for the IHX of a VHTR, owing to its good creep resistance, phase stability and corrosion resistance at high temperature. In this study, high-temperature corrosion tests were carried out at 850 - $950^{\circ}C$ in air and impure helium environments. Alloy 617 specimens showed a parabolic oxidation behavior for all temperatures and environments. The activation energy for oxidation was 154 kJ/mol in helium environment, and 261 kJ/mol in an air environment. The scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDS) results revealed that there were a Cr-rich surface oxide layer, Al-rich internal oxides and depletion of grain boundary carbide after corrosion test. The thickness and depths of degraded layers also showed a parabolic relationship with the time. A corrosion rate of $950^{\circ}C$ in impure helium was higher than that in an air environment, caused by difference in the outer oxide morphology.

Keywords

References

  1. R. Elder, R. Allen, Prog. Nucl. Energy, 51, 500 (2009). https://doi.org/10.1016/j.pnucene.2008.11.001
  2. T. Hirano, M. Okada, H. Araki, T. Noda, H. Yoshida, and R. Watanabe, Metall. Trans. A., 12, 451 (1981). https://doi.org/10.1007/BF02648542
  3. W. Ren and R. Swimdeman, J. Pressure Vessel Technol., 131, 024002 (2009). https://doi.org/10.1115/1.2967885
  4. Special Metals Publication, Number SMC-029, INCONEL Alloy 617 (2005).
  5. P. J. Ennis, W. J. Quadakkers, and H. Schuster, Journal De physique VI., 3, 979 (1993).
  6. S. K. Sharma, G. D. Ko, F. X. Li, and K. J. Kang, J. Nucl. Mater., 378, 144 (2008). https://doi.org/10.1016/j.jnucmat.2008.04.021
  7. Y. Hosoi and S. Abe, Metall. Trans. A, 6A, 1171 (1975).
  8. R. H. Cook, Nucl. Technol., 66, 283 (1984). https://doi.org/10.13182/NT84-A33431
  9. M. R. Quadakkers, Werkstoffe und Korrosion 36, 335 (1984).
  10. H.-J. Christ, U. Kunecke, K. Meyer, and G. Sockel, Mater. Sci. Eng., 87, 161 (1987). https://doi.org/10.1016/0025-5416(87)90374-0
  11. K. B. S. Rao, H.-P. Meurer, and H. Schuster, Mater. Sci. Eng., A104, 37 (1988).
  12. B. Huchtemann. Mater. Sci. Eng. A, 121, 623 (1989).
  13. F. Rouillard, C. Cabet, K. Wolski, A. Terlain, M. Tabarant, M. Pijolat, and F. Valdivieso, J. Nucl. Mater., 362, 248 (2007). https://doi.org/10.1016/j.jnucmat.2007.01.049
  14. P. S. Shankar and K. Natesan, J. Nucl. Mater., 366, 28 (2007). https://doi.org/10.1016/j.jnucmat.2006.12.028
  15. T. C. Totemeier and H. Tian, Mater. Sci. Eng. A, 468-470, 81 (2007). https://doi.org/10.1016/j.msea.2006.10.170
  16. C. Cabet and B. Duprey, Proc. of HTR 2010, Prague, Czech Republic, October 18-20, p.54 (2010).
  17. C. Jang, D. Lee, and D. Kim, Int. J. Press. Vessels. Pip., 85, 368 (2008). https://doi.org/10.1016/j.ijpvp.2007.11.010
  18. T. S. Jo, S.-H. Kim, D.-G. Kim, J. Y. Park, and Y. D. Kim, Met. Mater. Int., 14 739 (2008). https://doi.org/10.3365/met.mat.2008.12.739
  19. D. Kim, C. Jang, and W. S. Ryu, Oxid. Met., 71, 271 (2009). https://doi.org/10.1007/s11085-009-9142-5
  20. D.-J. Kim, G.-G. Lee, S. W. Kim, and H. P. Kim, Corros. Sci. Tech., 9, 164 (2010).
  21. D.-J. Kim, G.-G. Lee, S. J. Jeong, W.-G. Kim, and J. Y. Park, Nucl. Eng. Technol., 43, 429 (2011). https://doi.org/10.5516/NET.2011.43.5.429
  22. G.-G. Lee, S. Jung, D. Kim, W.-G. Kim, J. Y. Park, and D.-J. Kim, Kor. J. Mater. Res., 21, 596 (2011). https://doi.org/10.3740/MRSK.2011.21.11.596
  23. J. H. Lim, T. S. Jo, J. Y. Park, and Y. D. Kim, Korean J. Met. Mater., 48, 1078 (2010).
  24. Yong-Wan Kim et al., RR-2992, p.17, KAERI (2008).
  25. N. Birks, G. H. Meier, and F. S. Pettit, Introduction to the High-Temperature Oxidation of Metals 2nd, pp.49-50, Cambridge University Press, UK (2006).
  26. D. Young, High Temperature Oxidation and Corrosion of Metals, p.81, Elsevier (2008).
  27. W. W. Smeltzer and D. J. Young, Prog. Solid State Chem., 10, 17 (1975). https://doi.org/10.1016/0079-6786(75)90003-5
  28. A. C. S. Sabioni, A. M. Huntz, F. Silva, and F. Jomard, Mater. Sci. Eng., A392, 254 (2005).
  29. C. Cabet, J. Chapovaloff, F. Rouillard, G. Girardin, D. Kaczorowski, K. Wolski, and M. Pijolat, J. Nucl. Mater., 375, 173 (2008). https://doi.org/10.1016/j.jnucmat.2007.11.006
  30. Donachie M. J. and Donachie S. J, SUPERALLOYS: A Technical Guide, 2nd, p27, ASM International (2002).
  31. Young Do Kim et al., CM-1208, p.15, KAERI (2009).
  32. Q. Wu, H. Song, R. Swindeman, J. Shingledecker, and V. Vasudevan, Metall. Mater. Trans. A, 39A, 2569 (2008).

Cited by

  1. Effects of alloying elements on the mechanical and high temperature corrosion properties of solid-solution hardening nickel-base alloy vol.13, pp.5, 2014, https://doi.org/10.14773/cst.2014.13.5.178