• Title/Summary/Keyword: energy dispersive X-ray spectroscopy

Search Result 639, Processing Time 0.025 seconds

Biosorption of Lead(II) by Arthrobacter sp. 25: Process Optimization and Mechanism

  • Jin, Yu;Wang, Xin;Zang, Tingting;Hu, Yang;Hu, Xiaojing;Ren, Guangming;Xu, Xiuhong;Qu, Juanjuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1428-1438
    • /
    • 2016
  • In the present work, Arthrobacter sp. 25, a lead-tolerant bacterium, was assayed to remove lead(II) from aqueous solution. The biosorption process was optimized by response surface methodology (RSM) based on the Box-Behnken design. The relationships between dependent and independent variables were quantitatively determined by second-order polynomial equation and 3D response surface plots. The biosorption mechanism was explored by characterization of the biosorbent before and after biosorption using atomic force microscopy (AFM), scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The results showed that the maximum adsorption capacity of 9.6 mg/g was obtained at the initial lead ion concentration of 108.79 mg/l, pH value of 5.75, and biosorbent dosage of 9.9 g/l (fresh weight), which was close to the theoretically expected value of 9.88 mg/g. Arthrobacter sp. 25 is an ellipsoidal-shaped bacterium covered with extracellular polymeric substances. The biosorption mechanism involved physical adsorption and microprecipitation as well as ion exchange, and functional groups such as phosphoryl, hydroxyl, amino, amide, carbonyl, and phosphate groups played vital roles in adsorption. The results indicate that Arthrobacter sp. 25 may be potentially used as a biosorbent for low-concentration lead(II) removal from wastewater.

Effect of additives on the hydrothermal synthesis of manganese ferrite nanoparticles

  • Kurtinaitiene, Marija;Mazeika, Kestutis;Ramanavicius, Simonas;Pakstas, Vidas;Jagminas, Arunas
    • Advances in nano research
    • /
    • v.4 no.1
    • /
    • pp.1-14
    • /
    • 2016
  • Superparamagnetic iron oxide nanoparticles (Nps), composed of magnetite, $Fe_3O_4$, or maghemite, ${\gamma}-Fe_2O_3$, core and biocompatible polymer shell, such as dextran or chitozan, have recently found wide applications in magnetic resonance imaging, contrast enhancement and hyperthermia therapy. For different diagnostic and therapeutic applications, current attempt is focusing on the synthesis and biomedical applications of various ferrite Nps, such as $CoFe_2O_4$ and $MnFe_2O_4$, differing from iron oxide Nps in charge, surface chemistry and magnetic properties. This study is focused on the synthesis of manganese ferrite, $MnFe_2O_4$, Nps by most commonly used chemical way pursuing better control of their size, purity and magnetic properties. Co-precipitation syntheses were performed using aqueous alkaline solutions of Mn(II) and Fe(III) salts and NaOH within a wide pH range using various hydrothermal treatment regimes. Different additives, such as citric acid, cysteine, glicine, polyetylene glycol, triethanolamine, chitosan, etc., were tested on purpose to obtain good yield of pure phase and monodispersed Nps with average size of ${\leq}20nm$. Transmission electron microscopy (TEM), X-ray diffraction, energy dispersive X-ray spectroscopy (EDX), $M\ddot{o}ssbauer$ spectroscopy down to cryogenic temperatures, magnetic measurements and inductively coupled plasma mass spectrometry were employed in this study.

Electrochemical Properties of Ball-milled Tin-Graphite Composite Anode Materials for Lithium-Ion Battery (볼 밀링으로 제조된 리튬이온전지용 주석-흑연 복합체 음극재의 전기화학적 특성)

  • Lee, Tae-Hui;Hong, Hyeon-A;Cho, Kwon-Koo;Kim, Yoo-Young
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.462-469
    • /
    • 2021
  • Tin/graphite composites are prepared as anode materials for Li-ion batteries using a dry ball-milling process. The main experimental variables in this work are the ball milling time (0-8 h) and composition ratio (tin:graphite=5:95, 15:85, and 30:70 w/w) of graphite and tin powder. For comparison, a tin/graphite composite is prepared using wet ball milling. The morphology and structure of the different tin/graphite composites are investigated using X-ray diffraction, Raman spectroscopy, energy-dispersive X-ray spectroscopy, and scanning and transmission electron microscopy. The electrochemical properties of the samples are also examined. The optimal dry ball milling time for the uniform mixing of graphite and tin is 6 h in a graphite-30wt.%Sn sample. The electrode prepared from the composite that is dry-ball-milled for 6 h exhibits the best cycle performance (discharge capacity after 50th cycle: 308 mAh/g and capacity retention: 46%). The discharge capacity after the 50th cycle is approximately 112 mAh/g, higher than that when the electrode is composed of only graphite (196 mAh/g after 50th cycle). This result indicates that it is possible to manufacture a tin/graphite composite anode material that can effectively buffer the volume change that occurs during cycling, even using a simple dry ball-milling process.

Improvement in Performance of Cu2ZnSn(S,Se)4 Absorber Layer with Fine Temperature Control in Rapid Thermal Annealing System (Cu2ZnSn(S,Se)4(CZTSSe) 흡수층의 급속 열처리 공정 온도 미세 조절을 통한 특성 향상)

  • Kim, Dong Myeong;Jang, Jun Sung;Karade, Vijay Chandrakant;Kim, Jin Hyeok
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.619-625
    • /
    • 2021
  • Cu2ZnSn(S,Se)4 (CZTSSe) based thin-film solar cells have attracted growing attention because of their earth-abundant and non-toxic elements. However, because of their large open-circuit voltage (Voc)-deficit, CZTSSe solar cells exhibit poor device performance compared to well-established Cu(In,Ga)(S,Se)2 (CIGS) and CdTe based solar cells. One of the main causes of this large Voc-deficit is poor absorber properties for example, high band tailing properties, defects, secondary phases, carrier recombination, etc. In particular, the fabrication of absorbers using physical methods results in poor surface morphology, such as pin-holes and voids. To overcome this problem and form large and homogeneous CZTSSe grains, CZTSSe based absorber layers are prepared by a sputtering technique with different RTA conditions. The temperature is varied from 510 ℃ to 540 ℃ during the rapid thermal annealing (RTA) process. Further, CZTSSe thin films are examined with X-ray diffraction, X-ray fluorescence, Raman spectroscopy, IPCE, Energy dispersive spectroscopy and Scanning electron microscopy techniques. The present work shows that Cu-based secondary phase formation can be suppressed in the CZTSSe absorber layer at an optimum RTA condition.

Synthesis of Carbon Nanofibers Based on Resol Type Phenol Resin and Fe(III) Catalysts

  • Hyun, Yu-Ra;Kim, Hae-Sik;Lee, Chang-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3177-3183
    • /
    • 2012
  • The carbon nanofibers (CNFs) used in this study were synthesized with an iron catalyst and ethylene as a carbon source. A concentration of 30 wt % iron(III) acetylacetonate was dissolved in resol type phenol resin and polyurethane foam was put into the solution. The sample was calendered after being cured at $80^{\circ}C$ in air for 24 h. Stabilization and carbonization of the resol type phenol resin and reduction of the $Fe^{3+}$ were completed in a high-temperature furnace by the following steps: 1) heating to $600^{\circ}C$ at a rate of $10^{\circ}C/min$ with a mixture of $H_2/N_2$ for 4 h to reduce the $Fe^{3+}$ to Fe; 2) heating to $1000^{\circ}C$ in $N_2$ at a rate $10^{\circ}C/min$ for 30 minutes for pyrolysis; 3) synthesizing CNFs in a mixture of 20.1% ethylene and $H_2/N_2$ at $700^{\circ}C$ for 2 h using a CVD process. Finally, the structural characterization of the CNFs was performed by scanning electron microscopy and a synthesis analysis was carried out using energy dispersive spectroscopy and X-ray photoelectron spectroscopy. Specific surface area analysis of the CNFs was also performed by $N_2$-sorption.

Coating of amorphous nitrides on carbon nanotubes and field emission properties (탄소 나노튜브에 대한 비정질 질화막의 코팅 및 전계방출 특성)

  • Noh, Young-Rok;Kim, Jong-Pil;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1244_1245
    • /
    • 2009
  • Coating of amorphous nitride thin layers, such as boron nitride (BN) and carbon nitride (CN), has been performed on carbon nanotubes (CNTs) for the purpose of enhancing their electron-emission performances because those nitride films have relatively low work functions and commonly exhibit negative electron affinity behavior. The CNTs were directly grown on metal-tip (tungsten, approximately 500 nm in diameter at the summit part) substrates by inductively coupled plasma-chemical vapor deposition (ICP-CVD). Sharpening of the tungsten tips were carried out by electrochemical etching. Morphologies and microstructures of BN and CN films were analyzed by field-emission scanning electron microscopy (FE-SEM), energy dispersive x-ray (EDX) spectroscopy, and Raman spectroscopy. The electron-emission properties (such as maximum emission currents and turn-on fields) of the BN-coated and CN-coated CNT-emitters were characterized in terms of the thickness of BN and CN layers.

  • PDF

Cost-effective polyvinylchloride-based adsorbing membrane for cationic dye removal

  • Namvar-Mahboub, Mahdieh;Jafari, Zahra;Khojasteh, Yasaman
    • Membrane and Water Treatment
    • /
    • v.11 no.2
    • /
    • pp.131-139
    • /
    • 2020
  • The current study focused on the preparation of low-cost PVC-based adsorbing membrane. Metakaolin, as available adsorbent, was embedded into the PVC matrix via solution blending method. The as-prepared PVC/metakaolin mixed matrix membranes were characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM), pure water permeability and contact angle measurements. The results confirmed the improvement of PWP and hydrophilicity due to the presence of metakaolin in the PVC matrix. Additionally the structure of PVC membrane was changed due to the incorporation of metakaolin in the polymer matrix. The static adsorption capacity of all samples was determined through dye removal. The effect of metakaolin dosage (0-7%) and pH (4, 8, 12) on dye adsorption capacity was investigated. The results depicted that the highest adsorption capacity was achieved at pH of 4 for all samples. Additionally, adsorption data were fitted on Langmuir, Freundlich, and Temkin models to determine the appropriate governing isotherm model. Finally, the dynamic adsorption capacity of the optimum PVC/metakaolin membrane was studied using dead-end filtration cell. The dye removal efficiency was determined for pure PVC and PVC/metakaolin membrane. The results demonstrated that PVC/metakaolin mixed matrix membrane had a high adsorption capacity for dye removal from aqueous solution.

Enhanced Electrocatalytic Activity of Low Ni Content Nano Structured NiPd Electrocatalysts Prepared by Electrodeposition Method for Borohydride Oxidation

  • Zolfaghari, Mahdieh;Arab, Ali;Asghari, Alireza
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.238-247
    • /
    • 2020
  • Some nano structured bimetallic NiPd electrocatalysts were electrodeposited on glassy carbon electrodes using a double potential step chronoamperometry. The morphology of the electrodeposited samples was investigated by field emission-scanning electron microscopy, while their compositions were evaluated using energy dispersive X-ray spectroscopy. It was observed that the electrodeposited samples contained a low Ni content, in the range of 0.80 - 7.10%. The electrodeposited samples were employed as the anode electro-catalysts for the oxidation of sodium borohydride in NaOH solution (1.0 M) using cyclic voltammetry, chronoamperometry, rotating disk electrode, and impedance spectroscopy. The number of exchanged electrons, charge transfer resistances, apparent rate constants, and double layer capacitances were calculated for the oxidation of borohydride on the prepared catalysts. According to the results obtained, the NiPd-2 sample with the lowest Ni content (0.80%), presented the highest catalytic activity for borohydride oxidation compared with the other NiPd samples as well as the pure Pd sample. The anodic peak current density was obtained to be about 1.3 times higher on the NiPd-2 sample compared with that for the Pd sample.

Improvement of Organic Electroluminescent Device Performance by $O_2$ Plasma Treatment of ITO Surface (ITO 박막의 $O_2$ 플라즈마 처리에 의한 휴지전기발광소자의 특성 향상)

  • Yang, Ki-Sung;Kim, Doo-Seok;Kim, Byoung-Sang;Shin, Hoon-Kyu;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.137-140
    • /
    • 2004
  • We treated $O_2$ plasma on ITO thin film using RIE (Reactive Ion Etching) system, and analyzed the ingredient of ITO thin film according to change of processing conditions. The ingredient analysis of ITO thin film was used by EDS (Energy Dispersive Spectroscopy) and XPS (X-ray Photoelectron Spectroscopy) to compare and analyze the ingredient of bulk and surface. We measured electrical resistivity using Four-Point-Probe and calculated sheet resistance, and ITO surface roughness was measured by using AFM (Atomic Force Microscope). Finally, we fabricated OLEDs (Organic Light-Emitting Diodes) device using substrate that was treated optimum ITO surface. The result of the study for electrical and optical properties using I V L System (Flat Panel Display Analysis System), we confirmed that electrical properties (I-V) and optical properties (L-V) were improved.

  • PDF

A Study on the Sinterning of the Carbon Nanotube/Metal Composites for the Heat Transfer Enhancement (열전달 촉진을 위한 탄소나노튜브(CNT)/금속 복합체 소결 코팅에 관한 연구)

  • Zheng, XiRu;Kim, Min Soo;Park, Chan Woo
    • Composites Research
    • /
    • v.26 no.6
    • /
    • pp.373-379
    • /
    • 2013
  • The coating of metal surface with carbon nanotubes (CNTs) has been studied for the heat transfer enhancement of the boiling and condensation of refrigerant. The MWCNT/copper composite powder was made by the attrition ball milling, which has been coated on the copper wafer by electrostatic powder coating and sintered with electric furnace. In this paper, experiments were performed to assess the characterization and comparison of CNT before and after sinterning and the morphology changes of the CNT/Cu-coated surface. The samples were examined by the scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDAX) and raman spectroscopy. To verify the heat transfer enhancement, boiling heat transfer tests were performed.