Browse > Article
http://dx.doi.org/10.12989/anr.2016.4.1.001

Effect of additives on the hydrothermal synthesis of manganese ferrite nanoparticles  

Kurtinaitiene, Marija (State Research Institute Centre for Physical Sciences and Technology)
Mazeika, Kestutis (State Research Institute Centre for Physical Sciences and Technology)
Ramanavicius, Simonas (State Research Institute Centre for Physical Sciences and Technology)
Pakstas, Vidas (State Research Institute Centre for Physical Sciences and Technology)
Jagminas, Arunas (State Research Institute Centre for Physical Sciences and Technology)
Publication Information
Advances in nano research / v.4, no.1, 2016 , pp. 1-14 More about this Journal
Abstract
Superparamagnetic iron oxide nanoparticles (Nps), composed of magnetite, $Fe_3O_4$, or maghemite, ${\gamma}-Fe_2O_3$, core and biocompatible polymer shell, such as dextran or chitozan, have recently found wide applications in magnetic resonance imaging, contrast enhancement and hyperthermia therapy. For different diagnostic and therapeutic applications, current attempt is focusing on the synthesis and biomedical applications of various ferrite Nps, such as $CoFe_2O_4$ and $MnFe_2O_4$, differing from iron oxide Nps in charge, surface chemistry and magnetic properties. This study is focused on the synthesis of manganese ferrite, $MnFe_2O_4$, Nps by most commonly used chemical way pursuing better control of their size, purity and magnetic properties. Co-precipitation syntheses were performed using aqueous alkaline solutions of Mn(II) and Fe(III) salts and NaOH within a wide pH range using various hydrothermal treatment regimes. Different additives, such as citric acid, cysteine, glicine, polyetylene glycol, triethanolamine, chitosan, etc., were tested on purpose to obtain good yield of pure phase and monodispersed Nps with average size of ${\leq}20nm$. Transmission electron microscopy (TEM), X-ray diffraction, energy dispersive X-ray spectroscopy (EDX), $M\ddot{o}ssbauer$ spectroscopy down to cryogenic temperatures, magnetic measurements and inductively coupled plasma mass spectrometry were employed in this study.
Keywords
manganese ferrite; nanoparticles; hydrothermal synthesis; phase purity; magnetic properties;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ahn, T., Kim, J.H., Yang, H.M., Lee, J.W. and Kim, J.D. (2012), "Formation pathways of magnetite nanoparticles by coprecipitation method", J. Phys. Chem. C, 116, 6069-6076.   DOI
2 Banerjee, S.S. and Chen, D.H. (2008), "Multifunctional pH-sensitive magnetic nanoparticles for simultaneous imaging, sensing and targeted intracellular anticancer drug delivery", Nanotechnology, 19, 505104.   DOI
3 Bao, N., Shen, L., An, W., Padhan, P., Turner, C. and Gupta, A. (2009), "Formation mechanism and shape control of monodisperse magnetic $CoFe_2O_4$ nanocrystals", Chem. Mater., 21(14), 3458-3468.   DOI
4 Brabers, V.A.M. (1995), Progress in spinel ferrite research, Handbook of Magnetic Materials, Ed. Buschow, K.H.J., Vol. 8, Chapter 3, Elsevier, NY, USA.
5 Byrappa, K., Ohara, S. and Adschiri, T. (2008), "Nanoparticles synthesis using supercritical fluid technology-towards biomedical applications", Adv. Drug, Delivery Rev., 126, 273-279.
6 Coker, V.S., Telling, N.D., van der Laan, G., Pattrick, R.A.D., Pearce, C.I., Arenholz, E., Tuna, F., Winpenny, R.E.P. and Lloyd, J.R. (2009), "Harnessing the extracellular bacterial production of nanoscale cobalt ferrite with exploitable magnetic properties", ACS Nano, 3(7), 1922-1928.   DOI
7 Corchero, J. and Villaverde, A. (2009), "Biomedical applications of distally controlled magnetic nanoparticles", Trend. Biotechnol., 27(8), 468-476.   DOI
8 Guinier, A., Lorrain, P. and Lorrain, D.S.M. (1963), X-Ray Diffraction : In Crystals, Imperfect Crystals and Amorphous Bodies, Freeman, W.H. & Co., San Francisco, CA, USA.
9 Gupta, A.K. and Gupta, M. (2005), "Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications", Biomater., 26, 3995-4021.   DOI
10 Hu, Y., Xie, W., Tang, Y.W. and Wan, C.H. (2007), "Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells", J. Controll. Relase., 118, 7-17.   DOI
11 Hubert-Pfalzgraf, L.G. (1998), "Some aspects of homo and heterometallic alkoxides based on functional alcohols", Coordinat. Chem. Rev., 178-180, 967-997.   DOI
12 Kumar, C.S.S.R. and Mohammad, F. (2011), "Magnetic nanoparticles for hyperthermia-based therapy and controlled drug delivery", Adv. Drug. Delivery Rev., 6 3, 789-808.   DOI
13 Janghorban, K. and Shokrollahi, H. (2007), "Influence of $V_2O_5$ addition on the grain growth and magnetic properties of Mn-Zn high permeability ferrites", J. Magn. Magn. Mater., 308, 238-242.   DOI
14 Jiang, J.Z., Wynn, S., Morup, S., Okada, T. and Berry, F.J. (1999), "Magnetic structure evolution in mechanically milled nanostructured $ZnFe_2O_4$ particles", Nanostruct. Mater., 12, 737-74.   DOI
15 Jones, D.H. and Srivastava, K.K.P. (1986), "Many-state relaxation model for the Mossbauer spectra of superparamagnets", Phys. Rev. B, 34, 7542-7548.   DOI
16 Latrigue, L., Wilhelm, C., Servais, J., Factor, R., Dencousse, A., Bacri, J.C., Luciani, N. and Gazeau, F. (2012), "Nanomagnetic Sensing of Blood Plasma Protein Interactions with Iron Oxide Nanoparticles: Impact on Macrophage Uptake", ACS Nano., 6, 2665-2678.   DOI
17 Laokul, P., Amornkitbamrung, V., Seraphin, S. and Maensiri, S. (2011), "Characterization of magnetic properties of nanocrystalline $CuFe_2O_4$, $NiFe_2O_4$, $ZnFe_2O_4$ powders prepared by the Aloe vera extract solution", Curr.Appl. Phys., 11(1), 101-108.   DOI
18 Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L.V. and Muller, R.N. (2008), "Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications", Chem. Rev., 108, 2064-2110.   DOI
19 Lee, D.K., Kim, Y.H., Kang, Y.S. and Stroeve, P. (2005), "Preparation of a Vast $CoFe_2O_4$ Magnetic Monolayer by Langmuir-Blodgett Technique", J. Phys. Chem. B, 109(31), 14939-14944.   DOI
20 Liu, B.H., Ding, J., Dong, Z.L., Boothroyd, C.B., Yin, J.H. and Yi, J.B. (2006), "Microstructural evolution and its influence on the magnetic properties of $CoFe_2O_4$ powders during mechanical milling", Phys. Rev. B, 74, 184427.   DOI
21 Liu, Y., Zhang, Y., Feng, J.D., Li, C.F., Shi, J. and Xiong, R. (2009), "Dependence of magnetic properties on crystallite size of $CoFe_2O_4$ nanoparticles synthesised by auto-combustion method", J. Exp. Nanosci., 4, 159-168.   DOI
22 Lu, A.H., Salabas, E.L. and Schuth, F. (2007), "Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application", Angew. Chem. Int. Ed., 46, 1222-1244.   DOI
23 Mahmoudi, M., Sant, S., Wang, B., Laurent, S. and Sen, T. (2011), "Superparamagnetic iron oxide nanoparticles (SPION's): Development, surface modification and application in chemotherapy", Adv. Drug Delivery Rev., 63, 24-46.   DOI
24 Naseri, M.G., Saion, E.B. and Kamali, A. (2012), "An overview on nanocrystalline $ZnFe_2O_4$, $MnFe_2O_4$, and $CoFe_2O_4$ synthesized by a thermal treatment method", ISRN Nanotechnol., ID 604241, doi:10.5402/2012/604241.   DOI
25 Peddis, D., Cannas, C., Musinu, A. and Piccaluga, G. (2008), "Coexistence of superparmagnetism and spinglass like magnetic ordering phenomena in a Co$Fe_2O_4-SiO_2$ nanocomposite", J. Phys. Chem. C, 112(13), 5141-5147.   DOI
26 Pereira, C., Pereira, A.M., Fernandes, C., Araujo, J.A., Freire, C. et al (2012), "Superparamagnetic Me$Fe_2O_4$ (M=Fe, Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route", Chem. Mater., 24, 1496-1504.   DOI
27 Shokrollahi, H. (2008), "Magnetic properties and densification of manganese-zinc soft ferrites ($Mn_{1-x}Zn_xFe_2O_4$) doped with low melting point oxides", J. Magn. Magn. Mater., 320, 463-474.   DOI
28 Pramanik, N.C., Fujii, T., Nakanishi, M. and Takada, J. (2004), "Effect of $Co^{2+}$ ion on the magnetic properties of sol-gel cobalt ferrite thin films", J. Mater. Chem., 14, 3328-3332.   DOI
29 Pratsinis, S.E. and Vemury, S. (1996), "Particle formation in gases-a review", Powder Technol., 88, 267-272.   DOI
30 Salazar, J.S., Perez, L., de Abril, O., Phuoc, L.T., Ihiawakrim, D., Vazgues, M., Greneche, J.M., Begin-Colin, S. and Pourroy, G. (2011), "Magnetic Iron Oxide Nanoparticles in 10-40 nm Range: Composition in terms of magnetite/maghemite ratio and effect on the magnetic properties", Chem. Mater. B, 23, 1379-1386.   DOI
31 Solano, E., Perez-Mirabet, L., Martinez-Julian, F., Guzman, R., Arbiol, J. et al. (2012), "Facile and efficient one-pot solvothermal and microwave-assisted synthesis of stable colloidal solutions of $MFe_2O_4$ spinel magnetic nanoparticles", J. Nanopart. Res., 14, 1034-1038.   DOI
32 Sun, S., Zeng, H., Robinson, D.B., Raoux, S., Rice, P.M., Wang, S.X. and Li, G. (2004), "Monodisperse $MFe_2O_4$ (M=Fe, Co, Mn) nanoparticles", J. Am. Chem. Soc., 126(1), 273-279.   DOI
33 Thomas, M.F. and Johnson, C.E. (1986), "Mossbauer spectroscopy", Dickson D.P.E. and Berry F.J. Cambridge University Press, Cambridge.
34 Tourinho, F.A., Franck, R. and Massart, R. (1990), "Aqueous ferro fluids based on manganese and cobalt ferrites", J. Mater. Sci., 25, 3249-3254.   DOI
35 Zheng, L., He, K., Xu, C.Y. and Shao, W.Z. (2008), "Synthesis and characterization of single crystalline $MnFe_2O_4$ nanorods via a surfactant-free hydrothermal route", J. Magn. Magn. Mater., 320(21), 2672-2675.   DOI
36 Yang, H., Zhang, C., Shi, X., Hu, H., Du, X., Fang, Y., Ma, Y., Wu, H. and Yang, S. (2010), "Watersoluble super paramagnetic manganese ferrite nanoparticles for magnetic resonance imaging", Biomater., 31, 3667-3673.   DOI
37 Zeng, H., RiCe, P.M., Wang, S.X. and Sun, S. (2004), "Monodisperse $MFe_2O_4$ (M=Fe,Co,Mn) nanoparticles", J. Am. Chem. Soc., 126, 11458-11459.   DOI