Browse > Article
http://dx.doi.org/10.33961/jecst.2019.00458

Enhanced Electrocatalytic Activity of Low Ni Content Nano Structured NiPd Electrocatalysts Prepared by Electrodeposition Method for Borohydride Oxidation  

Zolfaghari, Mahdieh (Department of Chemistry, Semnan University)
Arab, Ali (Department of Chemistry, Semnan University)
Asghari, Alireza (Department of Chemistry, Semnan University)
Publication Information
Journal of Electrochemical Science and Technology / v.11, no.3, 2020 , pp. 238-247 More about this Journal
Abstract
Some nano structured bimetallic NiPd electrocatalysts were electrodeposited on glassy carbon electrodes using a double potential step chronoamperometry. The morphology of the electrodeposited samples was investigated by field emission-scanning electron microscopy, while their compositions were evaluated using energy dispersive X-ray spectroscopy. It was observed that the electrodeposited samples contained a low Ni content, in the range of 0.80 - 7.10%. The electrodeposited samples were employed as the anode electro-catalysts for the oxidation of sodium borohydride in NaOH solution (1.0 M) using cyclic voltammetry, chronoamperometry, rotating disk electrode, and impedance spectroscopy. The number of exchanged electrons, charge transfer resistances, apparent rate constants, and double layer capacitances were calculated for the oxidation of borohydride on the prepared catalysts. According to the results obtained, the NiPd-2 sample with the lowest Ni content (0.80%), presented the highest catalytic activity for borohydride oxidation compared with the other NiPd samples as well as the pure Pd sample. The anodic peak current density was obtained to be about 1.3 times higher on the NiPd-2 sample compared with that for the Pd sample.
Keywords
Borohydride Oxidation; Electrodeposition; Bimetallic NiPd Electrocatalysts; Nano Structure; Low Ni Content;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. PoncedeLeon, F.C. Walsh, A. Rose, J.B. Lakeman, D.J. Browning, R.W. Reeve, J. Power Sources., 2007, 164(2), 441-448.   DOI
2 M.H. Atwan, C.L.B. Macdonald, D.O. Northwood, E.L. Gyenge, J. Power Sources., 2006, 158(1), 36-44.   DOI
3 Z.P. Li, B.H. Liu, K Arai., K. Asaba, S. Suda, J. Power Sources., 2004, 126(1-2), 28-33.   DOI
4 H. Cheng, K. Scott, J. Power Sources., 2006, 160(1), 407-412.   DOI
5 B.H. Liu, S. Suda, J. Power Sources., 2007, 164(1), 100-104.   DOI
6 D.M.F. Santos, C.A.C. Sequeira, Renew. Sust. Energ. Rev., 2011, 15(8), 3980-4001.   DOI
7 L.B. Wang, C.A. Ma,. X.B. Mao, J.F. Sheng, F.Z. Bai, F. Tang, Electrochem. Commun., 2005, 7(12), 1477-1481.   DOI
8 J. Ma, N.A. Choudhury, Y. Sahai, Renew. Sust. Enery. Rev., 2010, 14, 183-199.   DOI
9 I. Merino-Jimenez, M.J. Janik, C. Ponce de Leon, F.C Walsh, J. Power Sources., 2014, 269, 498-508.   DOI
10 D.X. Cao, D.D. Chen, J. Lan, G.L. Wang, J. Power Sources., 2009, 190(2), 346-350.   DOI
11 J. Liu, H. Wang, C. Wu, Q. Zhao, X. Wang, L. Yi, Int. J. Hydrogen Energ., 2014, 39, 6729-6736.   DOI
12 D. Zhang, G. Wang, Y. Yuan, Y. Li, S. Jiang, Y. Wang, K. Ye, D. Cao, P. Yan, K. Cheng, Int. J. Hydrogen Energ., 2016, 41(27), 11593-11598.   DOI
13 D. Zhang, G. Wang, K. Cheng, J. Huang, P. Yan, D. Cao, J. Power Sources., 2014, 245, 482-486.   DOI
14 E. Gyenge, Electrochim. Acta., 2004, 49(6), 965-978.   DOI
15 J.H. Kim, H.S. Kim, Y.M. Kang, M.S. Song, S. Rajendran, S.C. Han, D.H. Jung, J.Y. Lee, J. Electrochem. Soc., 2004, 151(7), A1039-1043.   DOI
16 S.C. Amendola, P. Onnerud, M.T. Kelly, P.J. Petillo, S.L. Sharp-Goldman, M. Binder, J. Power Sources., 1999, 84(1), 130-133.   DOI
17 B. Molina Concha, M. Chatenet, Electrochim. Acta., 2009, 54, 6130-6139.   DOI
18 E. Sanli, H. Celikkan, B. Zuhtu Uysal, M.L. Aksu, Int .J. Hydrogen Energ., 2006, 31(13), 1920-1924.   DOI
19 M. Chatenet, F. Micoud, I. Roche, E. Chainet, Electrochim. Acta., 2006, 51, 5459-5467.   DOI
20 H. Cheng, K. Scott,. Electrochim. Acta., 2006, 51(17), 3429-3433.   DOI
21 D.X. Cao, Y.Y Gao, G.L. Wang, R.R. Miao, Y. Liu, Int. J. Hydrogen Energ., 2010, 35(2), 807-813.   DOI
22 C. Cenk, F.G. Boyaci San, H.I. Sarac, J. Power Sources., 2008, 185(1), 197-201.   DOI
23 J.Q. Yang, B.H. Liu, S. Wu, J. Power Sources., 2009, 194(2), 824-829.   DOI
24 M.H. Atwan, D.O. Northwood, E.L. Gyenge, Int. J. Hydrogen Energ., 2005, 30(12), 1323-1331.   DOI
25 B.H. Liu, Z.P. Li, S. Suda, J. Electrochem. Soc., 2003, 150(3), A398-402.   DOI
26 B. Molina Concha, M. Chatenet, Electrochim. Acta., 2009, 54, 6119-6129.   DOI
27 K.L. Wang, J.T. Lu, L. Zhuang, J. Phys. Chem. C., 2007, 111(20), 7456-7462.   DOI
28 B.H. Liu, Z.P. Li, S. Suda, Electrochim. Acta., 2004, 49(19), 3097-3105.   DOI
29 D.H. Duan, S.B. Liu, Y.P. Sun, J. Power Sources., 2012, 210, 198-203.   DOI
30 D.M.F. Santos, C.A.C., J. Electrochem. Soc., 2010, 157(1), B13-B19.   DOI
31 D.H Duan, X. You, J. Liang, S. Liu, Y. Wang, Electrochim. Acta., 2015, 176, 1126-1135.   DOI
32 R Awasthi, RN. Anindita, Singh, Open Catal. J., 2010, 3(1), 70-78.   DOI
33 M. Martins, B. Sljukic, O. Metin, M. Sevin, C.A.C. Sequera, T. Sener, D M.F. Santos, J. Alloys Compd., 2017, 718, 204-214.   DOI
34 G. Behmenyar, A.N. Akin, J. Power Sources., 2014, 249, 239-246.   DOI
35 M. Zhiani, I. Mohammadi, Fuel, 2016, 166, 517-525.   DOI
36 MG. Hosseini, M. Abdolmaleki, Int. J. Hydrogen Energ., 2013, 38(13), 5449-5456.   DOI
37 J. Bagchi, S.K. Bhattacharya, Transit. Metal. Chem., 2008, 33(1), 113-120.   DOI
38 J.T. Zhang, M.H. Huang, H.Y. Ma, F. Tian, W. Pan, S.H. Chen, Electrochem. Commun., 2007, 9(6), 1298-1304.   DOI
39 M.A. Abdel Rahim, H.B. Hassan, R.M. Abdel Hamid, J. Power Sources., 2006, 154(1), 59-65.   DOI
40 J.I. Martins, M.C. Nunes, R. Koch, L. Martins, M. Bazzaoui, Electrochim. Acta., 2007, 52(23), 6443-6449.   DOI
41 E. Gyenge, Electrochim. Acta., 2004, 49(6), 965-978.   DOI
42 B. Molina Concha, B. M. Chatenet, Electrochim. Acta., 2009, 54(26), 6119-6129.   DOI
43 Southampton Electrochemistry Group. Instrumental Methods in Electrochemistry. Chichester: Ellis Horwood Limited, 1985.
44 A.Tegoua, S.Papadimitrioua, I.Mintsoulia, S.Armyanovb, E. Valovab, G. Kokkinidisa, S. Sotiropoulosa, Catal. Today., 2011, 170, 126-133.   DOI
45 J. Koutecky, J.V.G. Levich, Zh. Fiz. Khim., 1958, 32(7), 1565-1575.
46 M. Simoes, S. Baranton, C. Cou tanceau, J. Phys. Chem. C., 2009, 113(30), 13369-13376.   DOI
47 MG. Hosseini, M. Abdolmaleki, S. Ashrafpoor, Chin. J. Catal., 2012, 33(11-22), 1817-1824.   DOI
48 M. Chatenet, F. Micoud, I. Roche, E. Chainet, Electrochim. Acta., 2006, 51, 5459-5467.   DOI
49 M. Simoes, S. Baranton, C. Coutanceau, Electrochim. Acta., 2010, 56(1), 580-591.   DOI
50 J..L Wei., X.Y. Wang, Y. Wang, Q.Q. Chen, F. Pei, Y.S. Wang, Int. J. Hydrogen Energ., 2009, 34, 3360-3366.   DOI
51 MG. Hosseini, R. Mahmoodi, J. Colloid Interf. Sci., 2017, 500, 264-275.   DOI
52 F. Gobal, M. Faraji, Electrochim. Acta., 2013, 100, 133-139.   DOI
53 R. Valiollahi, R. Ojani, JB. Raoof, Electrochim. Acta., 2016, 191, 230-236.   DOI