Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.11.619

Improvement in Performance of Cu2ZnSn(S,Se)4 Absorber Layer with Fine Temperature Control in Rapid Thermal Annealing System  

Kim, Dong Myeong (Department of Materials Science and Engineering, Chonnam National University)
Jang, Jun Sung (Department of Materials Science and Engineering, Chonnam National University)
Karade, Vijay Chandrakant (Department of Materials Science and Engineering, Chonnam National University)
Kim, Jin Hyeok (Department of Materials Science and Engineering, Chonnam National University)
Publication Information
Korean Journal of Materials Research / v.31, no.11, 2021 , pp. 619-625 More about this Journal
Abstract
Cu2ZnSn(S,Se)4 (CZTSSe) based thin-film solar cells have attracted growing attention because of their earth-abundant and non-toxic elements. However, because of their large open-circuit voltage (Voc)-deficit, CZTSSe solar cells exhibit poor device performance compared to well-established Cu(In,Ga)(S,Se)2 (CIGS) and CdTe based solar cells. One of the main causes of this large Voc-deficit is poor absorber properties for example, high band tailing properties, defects, secondary phases, carrier recombination, etc. In particular, the fabrication of absorbers using physical methods results in poor surface morphology, such as pin-holes and voids. To overcome this problem and form large and homogeneous CZTSSe grains, CZTSSe based absorber layers are prepared by a sputtering technique with different RTA conditions. The temperature is varied from 510 ℃ to 540 ℃ during the rapid thermal annealing (RTA) process. Further, CZTSSe thin films are examined with X-ray diffraction, X-ray fluorescence, Raman spectroscopy, IPCE, Energy dispersive spectroscopy and Scanning electron microscopy techniques. The present work shows that Cu-based secondary phase formation can be suppressed in the CZTSSe absorber layer at an optimum RTA condition.
Keywords
cztsse; kesterite; photovoltaic; temperature; thin film solar cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Wang, M. T. Winkler. O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu and D. B. Mitzi, Adv. Energy Mater., 4, 1301465 (2013).   DOI
2 S. Siebentritt and S. Schorr, Prog. Photovolt.: Res. Appl., 20, 512 (2012).   DOI
3 I. K. Nakazawa, Jpn. J. Appl. Phys., 27, 2094 (1988).   DOI
4 T. M. Friedlmeier, N. Wieser, T. Walter, H. Dittrich and H. W. Schock, Proceedings of the 14th European Photovoltaic Solar Energy Conference (1997).
5 NREL: Manufacturing Analysis - Supply Constraints Analysis. On the Web. Retrieved December 21, 2014 from https://www.nrel.gov/
6 M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato and H. Sugimoto, IEEE J. Photovolt., 9, 1863 (2019).   DOI
7 V. Fthenakis, Renew. Sustain. Energ. Rev., 13, 2746 (2009).   DOI
8 S. Siebentritt, Thin Solid Films, 535, 1 (2013).   DOI
9 M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan and Q. Qiao, Energ. Environ. Sci., 8, 3134 (2015).   DOI
10 S. Schorr, G. Gurieva, M. Guc, M. Dimitrevska, A. P. Rodriguez, V. I. Roca, C. S. Schnohr, J. R. Kim, W. Jo and J. M. Merino, J. Phys : Energy, 2, 012002 (2020).   DOI
11 S. Chen, X. G. Gong, A. Walsh and S. H. Wei, Appl. Phys. Lett., 94, 041903 (2009).   DOI
12 J. R. Kim, G. Y. Kim, T. T. T. Nguyen, S. H. Yoon, Y. Kim, S. Y. Lee, M. Y. Kim, D. H. Cho, Y. D. Chung, J. H. Lee, M. J. Seong and W. Jo, Phys. Chem. Chem. Phys., 22, 7597 (2020).   DOI
13 B. J. Stanbery, Crit. Rev. Solid State Mater. Sci., 27, 73 (2002).   DOI
14 X. Yin, C. Tang, L. Sun, Z. Shen and H. Gong, Chem. Mater., 26, 2005 (2014).   DOI
15 C. Yan, J. Huang, K. Sun, S. Johnston, Y. Zhang, H. Sun, A. Pu, M. He, F. Liu, K. Eder, L. Yang, J. M. Cairney, N. J. Ekins-Daukes, Z. Hameiri, J. A. Stride, S. Chen, M. A. Green and X. Hao, Nat. Energy, 3, 764 (2018).   DOI
16 D. H. Son, D, H, Kim, S. N. Park, K. J. Yang, D. H. Nam, H. S. Cheong and J. K. Kang, Chem. Mater., 27, 5180 (2015).   DOI
17 J. Marquez, M. Neuschitzer, M. Dimitrievska, R. Gunder, S. Haass, M. Werner, Y. E. Romanyuk, S. Schorr, N. M. Pearsall and I. Forbes, Sol. Energy Mater. Sol. Cells, 144, 579 (2016).   DOI
18 M. I. Amal, S. H. Lee and K. H. Kim, Curr. Appl. Phys., 14, 916 (2014).   DOI
19 L. Shi, C. Wang, J. Wang, Z. Fang and H. Xing, Adv. Mater. Phys. Chem., 6, 305 (2016).   DOI
20 T. Raadik, M. Grossberg, J. Krustok, M. Kauk-Kuusik, A. Crovetto, R. Bolt Ettlinger, O. Hanson and J. Schou, Appl. Phys. Lett., 110, 261105 (2017).   DOI
21 J. J. Scragg, J. T. Watjen, M. Edoff, T. Ericson, T. Kubart and C. P. Bjorkman, J. Am. Chem. Soc., 134, 19330 (2012).   DOI
22 K. Rudisch, Y. Ren, C. P. Bjorkman and J. Scragg, Appl. Phys. Lett., 108, 231902 (2016).   DOI
23 S. M. Pawar, A. I. Inamdar, B. S. Pawar, K. V. Gurav, S. W. Shin, X. Yanjun, S. S. Kolekar, J. H. Lee, J. H. Kim and H. S. Im, Mater. Lett., 118, 76 (2014).   DOI
24 S. Temgoua, R. Bodeux and N. Naghavi, Sol. Energy Mater. Sol. Cells, 172, 160 (2017).   DOI