DOI QR코드

DOI QR Code

Electrochemical Properties of Ball-milled Tin-Graphite Composite Anode Materials for Lithium-Ion Battery

볼 밀링으로 제조된 리튬이온전지용 주석-흑연 복합체 음극재의 전기화학적 특성

  • Lee, Tae-Hui (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Hong, Hyeon-A (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Cho, Kwon-Koo (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Kim, Yoo-Young (Department of Mechanical Engineering, Gyeongsang National University)
  • 이태희 (경상국립대학교 나노신소재융합공학과) ;
  • 홍현아 (경상국립대학교 나노신소재융합공학과) ;
  • 조권구 (경상국립대학교 나노신소재융합공학과) ;
  • 김유영 (경상국립대학교 융합기술공과대학 기계공학부)
  • Received : 2021.12.10
  • Accepted : 2021.12.24
  • Published : 2021.12.28

Abstract

Tin/graphite composites are prepared as anode materials for Li-ion batteries using a dry ball-milling process. The main experimental variables in this work are the ball milling time (0-8 h) and composition ratio (tin:graphite=5:95, 15:85, and 30:70 w/w) of graphite and tin powder. For comparison, a tin/graphite composite is prepared using wet ball milling. The morphology and structure of the different tin/graphite composites are investigated using X-ray diffraction, Raman spectroscopy, energy-dispersive X-ray spectroscopy, and scanning and transmission electron microscopy. The electrochemical properties of the samples are also examined. The optimal dry ball milling time for the uniform mixing of graphite and tin is 6 h in a graphite-30wt.%Sn sample. The electrode prepared from the composite that is dry-ball-milled for 6 h exhibits the best cycle performance (discharge capacity after 50th cycle: 308 mAh/g and capacity retention: 46%). The discharge capacity after the 50th cycle is approximately 112 mAh/g, higher than that when the electrode is composed of only graphite (196 mAh/g after 50th cycle). This result indicates that it is possible to manufacture a tin/graphite composite anode material that can effectively buffer the volume change that occurs during cycling, even using a simple dry ball-milling process.

Keywords

Acknowledgement

이 논문은 2020~2021년도 경상국립대학교 대학회계 연구비 지원에 의하여 연구되었음.

References

  1. N. Nitta, F. Wu, J. T. Lee and G. Yushin: Mater. Today, 18 (2015) 252. https://doi.org/10.1016/j.mattod.2014.10.040
  2. G. E. Blomgren: J. Electrochem. Soc., 164 (2017) A5019. https://doi.org/10.1149/2.0251701jes
  3. E. Peled, C. Menachem, D. Bar-Tow and A. Melman: J. Electrochem. Soc., 143 (1996) L4. https://doi.org/10.1149/1.1836372
  4. M. Winter and J. O. Besenhard: Electrochim. Acta, 45 (1999) 31. https://doi.org/10.1016/S0013-4686(99)00191-7
  5. J. Wang, F. Fan, Y. Liu, K. L. Jungjohann, S. W. Lee, S. X. Mao, X. Liu and T. Zhub: J. Electrochem. Soc., 161 (2014) F3019. https://doi.org/10.1149/2.0041411jes
  6. K. S. Eom, J. Jung, J. T. Lee, V. Lair, T. Joshi, S. W. Lee, Z. Lin and T. F. Fuller: Nano Energy, 12 (2015) 314. https://doi.org/10.1016/j.nanoen.2014.12.041
  7. K. Kravchyk, L. Protesescu, M. I. Bodnarchuk, F. Krumeich, M. Yarema, M. Walter, Ch. Guntlin and M. V. Kovalenko: J. Am. Chem. Soc., 135 (2013) 4199. https://doi.org/10.1021/ja312604r
  8. Y. Xu, Q. Liu, Y. Zhu, Y. Liu, A. Langrock, M. R. Zachariah and C. Wang: Nano Lett., 13 (2013) 470. https://doi.org/10.1021/nl303823k
  9. C. Wang, A. John Appleby and F. E. Little: J. Power Sources, 93 (2001) 174. https://doi.org/10.1016/S0378-7753(00)00576-0
  10. W. Yue, S. Yang, Y. Ren and X. Yang: Electrochim. Acta, 92 (2013) 412. https://doi.org/10.1016/j.electacta.2013.01.058
  11. M. Noh, Y. Kwon, H. Lee, J. Cho, Y. Kim and M. G. Kim: J. Mater. Chem., 17 (2005) 1926. https://doi.org/10.1021/cm0481372
  12. I. Meschini, F. Nobili, M. Mancini, R. Marassi, R. Tossici, A. Savoini, M. L. Focarete and F. Croce: J. Power Sources, 226 (2013) 241. https://doi.org/10.1016/j.jpowsour.2012.11.004
  13. J. Hassoun, S. Panero, G. Mulas and B. Scrosati: J. Power Sources, 171 (2007) 928. https://doi.org/10.1016/j.jpowsour.2007.06.067
  14. Y. S. Yoon, S. H. Jee, S. H. Lee and S. C. Nam: Surf. Coatings. Tech., 206 (2011) 553. https://doi.org/10.1016/j.surfcoat.2011.07.076
  15. K. Rana, A. Sil and S. Ray: Mater. Sci. Forum, 736 (2013) 127. https://doi.org/10.4028/www.scientific.net/MSF.736.127
  16. K. Wang, X. He, J. Ren, C. Jiang and C. Wan: J. New Mater. Electrochem. Syst., 10 (2007) 167.