• Title/Summary/Keyword: energy activation

Search Result 2,840, Processing Time 0.034 seconds

Production of Cyclodextrin Glucanotransferase from Aspergillus sp. CC-2-1 and its Characterization (Aspergillus sp. CC-2-1에 의해 생산되는 Cyclodextrin Glucanotransferase의 생산 및 특성)

  • Cho, Young-Je;Kim, Myoung-Uk
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.1158-1167
    • /
    • 2000
  • To produce ${\beta}-cyclodextrin({\beta}-CD)$, a cyclodextrin glucanotransferase(CGTase) producing Aspergillus sp. CC-2-1 was isolated from soil. The enzyme was purified and its enzymological characteristics were investigated. It was found that production of CGTase reached to the maximum when the wheat bran medium containing 0.1% albumin, 2% $(NH_4)_2S_2O_8$, 2% soluble starch and 0.2% $KH_2PO_4$ was cultured for 5 days at $37^{\circ}C$. The purity of CGTase was increased by 13.14 folds after DEAE-cellulose ion exchange chromatography and Sephadex G-100, G-150 gel filtration and the specific activity was 172.14 unit/mg. Purified enzyme was confirmed as a single band by the polyacrylamide gel electrophoresis. The molecular weight of CGTase was estimated to be 27,800 by Sephadex G-100 gel filtration and SDS-polyacrylamide gel electrophoresis. The optimum pH and temperature for the CGTase activity were 9.0 and $80^{\circ}C$, respectively. The enzyme was stable in pH $8.0{\sim}11.0$ at $60{\sim}80^{\circ}C$. The activity of purified enzyme was activated by $K^+,\;Cu^{2+}$ and $Zn^{2+}$. The activity of the CGTase was inhibited by the treatment with 2,4-dinitrophenol and iodine. The result suggests that the purified enzyme has phenolic hydroxyl group of tyrosine, histidine imidazole group and terminal amino group at active site. The reaction of this enzyme followed typical Michaelis-Menten kinetics with the $K_m$ value of 18.182 g/L with the $V_{max}$ of 188.68 ${\mu}mole/min$. The activation energy for the CGTase was calculated by Arrhenius equation was 1.548 kcal/mol.

  • PDF

Basic Study for Solvent Extraction Separation of Mo from Synthetic Leaching Solution of Inconel713C by Alamine336 (Inconel713C 모사 용액으로부터 Alamine336을 통한 Mo의 용매추출분리를 위한 기초 연구)

  • Park, Sang-ryul;Ahn, Jong-gwan
    • Resources Recycling
    • /
    • v.27 no.4
    • /
    • pp.16-22
    • /
    • 2018
  • Inconel713C which of a commercial Ni super alloy have the compositions of 70 wt.% Ni, 12 wt.% Cr, 6 wt.% Al and 4 wt.% Mo. In this study, solvent extraction has been performed to separate Mo from the synthetic leaching solution, formation of Inconel713C alloy similarly and is found the optimum conditions of recovery of Mo from the leaching solution. The effects of some variables, such as the nature and concentration of the extractants, $H_2SO_4$ concentrations, and the presence of impurities were investigated. The extraction percentage of Mo by Cyanex272 is 96% in the condition of pH 1 and 4% of concentration of Cyanex272 but Alamine336 is 99% in the condition of the range of pH 1 to 4 and 1 wt.% of concentration of Alamine336. In the case of Alamine336, the extraction percentage of Mo is increased by increasing of the concentration of Alamine336. The optimum condition of this experiment is pH 1 in aqueous phase, 1% concentration of Alamine336 and activation ratio of $H_2SO_4$ 1:0.5.

Studies on the Prediction of the Shelf-life of Kochujang through the Physicochemical and Sensory Analyses during Storage (고추장 저장 중 이화학 및 관능적 특성에 의한 유통기간 예측에 대한 연구)

  • Lee, Ki-Young;Kim, Hyung-Suk;Lee, Hyeon-Gyu;Han, Ouk;Chang, Un-Jae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.4
    • /
    • pp.588-594
    • /
    • 1997
  • In this study, the shelf-life of Kochujang during storage was predicted through physicochemical and sensory analyses. Amino nitrogen, lightness, characteristics of surface color, pH and number of viable cell counts in Kochujang decreased during storage, while ammonia nitrogen, titratable acidity and viscosity increased. Among the physicochemical analyses, amino nitrogen content exhibited the highest correlation with sensory score. The marginal amounts of amino nitrogen was 170.6mg%. Degradation rate of amino nitrogen was a first order reaction. Q$_{10}$-value and the activation energy of Kochujang during storage were 1.80 and 8.6kca1/mol, respectively. The shelf-life Predicted of Kochujang at each storage temperature was calculated. The shelf-life predicted was 467 days at 1$0^{\circ}C$, 261 days at 2$0^{\circ}C$ and 133 days at 35$^{\circ}C$.

  • PDF

Evaluation on Anti-oxidant Activity and Anti-inflammatory Effects for the New Formulation of Gamisoyosan (가미소요산의 새로운 제형에 대한 항산화 활성 및 항염증 효능평가)

  • Choi, Hye-Min;Kim, Se-Jin;Kim, In-Su;Lee, Ji-Beom;Kim, Jong-Beom;Moon, Sung-Ok;Lee, Hwa-Dong
    • The Korea Journal of Herbology
    • /
    • v.31 no.6
    • /
    • pp.1-9
    • /
    • 2016
  • Objectives : Gamisoyosan (GMS) is a useful prescription for treating insomnia, dysmenorrhea and infertility induced by a stress. Also, GMS has been used traditionally to improve systemic circulation and biological energy production. The purpose of this study was to assess the anti-oxidant activity and anti-inflammatory effects of Gamisoyosan Formulation (Soft extract, GMS-SE). Methods : The biological activities such as anti-oxidant and anti-inflammatory effects were measured through cell line-based in vitro assay. We investigated the anti-oxidant properties of GMS-SE on the 1,1-diphenyl-2-picryhydrazyl (DPPH) radical, contents of total flavonoid and polyphenol. GMS-SE compared to butyl hydroxy anizole (BHA). Furthermore, based on this result the anti-inflammatory effects of GMS-SE have verified by mechanism from LPS- treated Raw264.7 macrophages. Results : The anti-oxidant activities of GMS-SE increased markedly, in a dose-dependent manner. The GMS-SE showed significant scavenging activity (GMS-SE $500{\mu}g/m{\ell}$ : $32.77{\pm}1.65%$, GMS-SE $1000{\mu}g/m{\ell}$ : $45.06{\pm}1.04%$ and BHA $100{\mu}g/m{\ell}$ : $39.25{\pm}2.41%$ for DPPH assay). and, The total phenolic compound and flavonoids contents of GMS-SE were $73.93{\pm}6.87{\mu}g/mg$ and $698.75{\pm}6.78{\mu}g/mg$. GMS-SE which is LPS has diminished in the LPS-induced release of inflammatory mediators (NO, iNOS, COX2 and PGE2) and pro-inflammatory cytokines (TNF-${\alpha}$, IL-6 and IL-$1{\beta}$) from the RAW264.7 macrophages. Moreover, GMS-SE inhibited the activation of phosphorylation of p38 and ERK MAPKs by induced LPS. Conclusion : The present results indicate that GMS-SE has an anti-oxidant and anti-inflammatory properties, therefore may be beneficial in diseases which related to oxidative stress-mediated inflammatory disorders.

Curing and Rheological Behavior of Epoxy Resin Compositions for Underfill (언더필용 에폭시 수지 조성물의 경화 및 유변학적 거동)

  • Kim, Yoon-Jin;Park, Min;Kim, Jun-Kyung;Kim, Jin-Mo;Yoon, Ho-Gyu
    • Elastomers and Composites
    • /
    • v.38 no.3
    • /
    • pp.213-226
    • /
    • 2003
  • The cure and rheological behavior of diglycidyl ether of bisphenol F/nadic methyl anhydride resin system with the kinds of imidazole were studied using a differential scanning calorimeter (DSC) and a rotational rheometer. The isothermal traces were employed to analyze cure reaction. The DGEBF/ anhydride conversion profiles showed autocatalyzed reaction characterized by maximum conversion rate at $20{\sim}40 %$ of the reaction. The rate constants ($k_1,\;k_2$) showed temperature dependance, but reaction order did not. The reaction order (m+n) was calculated to be close to 3. There are two reaction mechanisms with the kinds oi catalyst. The gel time was determined by using G'-G" crossover method, and the activation energy was obtained from this results. From measurement of rheological properties it was found that the logarithmic 1:elation time of fused silica filled DBEBF epoxy compounds linearly increased with the content of filler and decreased with temperature. The highly filled epoxy compounds showed typical pseudoplastic behavior, and the viscosity of those decreased with increasing maximum packing ratio.

Generation of Hydrogen from Hydrolysis Reaction of NaBH4 Using Sea Water (바닷물을 이용한 NaBH4 가수분해에 의한 수소발생)

  • Lee, Daewoong;Oh, Sohyeong;Kim, Junseong;Kim, Dongho;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.758-762
    • /
    • 2019
  • Sodium borohydride,$NaBH_4$, has many advantages as hydrogen source for portable proton exchange membrane fuel cells (PEMFC). When PEMFC is used for marine use, $NaBH_4$ hydrolysis using seawater is economical. Therefore, in this study, hydrogen was generated by using seawater instead of distilled water in the process of hydrolysis of $NaBH_4$. Properties of $NaBH_4$ hydrolysis reaction using activated carbon supported Co-B/C catalyst were studied. The yield of hydrogen decreased as $NaBH_4$ concentration and NaOH concentration were increased during $NaBH_4$ hydrolysis using sea water. At higher concentrations of $NaBH_4$ and NaOH, byproducts adhered to the surface of the catalyst after hydrolysis reaction using sea water, reduced hydrogen yield compared to distilled water. The activation energy of $NaBH_4$ hydrolysis is 59.3, 74.4 kJ/mol for distilled water and sea water, respectively. In order to increase the hydrogen generation rate in seawater as high as distilled water, the reaction temperature has to be increased by $80^{\circ}C$ or more.

Effect of Precipitation Temperature and Solution pH on the Precipitation of Ammonium Metavanadate (침전온도 및 수용액 pH가 암모늄메타바나데이트 침전반응에 미치는 영향)

  • Heo, Seo-Jin;Kim, Rina;Chung, Kyeong Woo;Jeon, Ho-Seok;Kim, Chul-Joo;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.3-11
    • /
    • 2021
  • In this study, the effect of the solubility of ammonium metavanadate and the decomposition ratio of ammonium ions on a precipitation reaction-the precipitation of ammonium metavanadate by adding ammonium chloride to a sodium vanadate solution-was investigated. As the precipitation temperature and pH increased, the decomposition ratio of ammonium ions increased, and the decomposition ratio was greater than 81% at 45 ℃ and pH 9.3. This was approximately four times higher than that at pH 8. The result of the precipitation reaction, in view of these two factors that significantly influence the precipitation reaction, was that the precipitation yield increased as the temperature increased. However, the effect of temperature was not significant above 35 ℃. A kinetic study of the precipitation reaction revealed that the activation energy of the reaction was 42.3 kJ/mol. Therefore, considering the solubility of ammonium metavanadate, the lower the temperature, the better the vanadium recovery yield. Additionally, considering the decomposition of ammonium ions, the lower the pH of the aqueous solution, the more advantageous. However, at pH 8 or less, sodium polyvanadate is precipitated and the purity of vanadium oxide may reduce.

Long-Term Performance Prediction of Carbon Fiber Reinforced Composites Using Dynamic Mechanical Analyzer (동적기계분석장치를 이용한 탄소섬유/에폭시 복합재의 장기 성능 예측)

  • Cha, Jae Ho;Yoon, Sung Ho
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.78-84
    • /
    • 2019
  • This study focused on the prediction of the long-term performance of carbon fiber/epoxy composites using Dynamic Mechanical Analysis (DMA) and Time-Temperature Superposition (TTS). Single-frequency test, multi-frequency test, and creep TTS test were performed. A sinusoidal load of $20{\mu}m$ amplitude was applied while increasing the temperature from $-30^{\circ}C$ to $240^{\circ}C$ at $2^{\circ}C/min$ for the single-frequency test and the multi-frequency test. The frequencies applied to the multi-frequency test were 0.316, 1, 3.16, 10 and 31.6 Hz. In the creep TTS test, a stress of 15 MPa was applied for 10 minutes at every $10^{\circ}C$ from $-30^{\circ}C$ to $230^{\circ}C$. The glass transition temperature was determined by single-frequency test. The activation energy and the storage modulus curve for each temperature were obtained from glass transition temperature for each frequency by the multi-frequency test. The master curve for the reference temperature was obtained by applying the shift factor using the Arrhenius equation. Also, TTS test was used to obtain the creep compliance curves for each temperature and the master curve for the reference temperature by applying the shift factors using the manual shift technique. The master curve obtained through this process can be applied to predict the long-term performance of carbon fiber/epoxy composites for a given environmental condition.

Synthesis and Magnetic Property of Nanocrystalline Fe-Ni-Co Alloys during Hydrogen Reduction of Ni0.5Co0.5Fe2O4 (Ni0.5Co0.5Fe2O4의 수소환원에 의한 나노구조 Fe-Ni-Co 합금의 제조 및 자성특성)

  • Paek, Min Kyu;Do, Kyung Hyo;Bahgat, Mohamed;Pak, Jong Jin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.167-173
    • /
    • 2011
  • Nickel cobalt ferrite($Ni_{0.5}Co_{0.5}Fe_2O_4$) powder was prepared through the ceramic route by the calcination of a stoichiometric mixture of NiO, CoO and $Fe_2O_3$ at $1100^{\circ}C$. The pressed pellets of $Ni_{0.5}Co_{0.5}Fe_2O_4$ were isothermally reduced in pure hydrogen at $800{\sim}1100^{\circ}C$. Based on the thermogravimetric analysis, the reduction behavior and the kinetic reaction mechanisms of the synthesized ferrite were studied. The initial ferrite powder and the various reduction products were characterized by X-ray diffraction, scanning electron microscopy, reflected light microscope and vibrating sample magnetometer to reveal the effect of hydrogen reduction on the composition, microstructure and magnetic properties of the produced Fe-Ni-Co alloy. The arrhenius equation with the approved mathematical formulations for the gas solid reaction was applied to calculate the activation energy($E_a$) and detect the controlling reaction mechanisms. In the initial stage of hydrogen reduction, the reduction rate was controlled by the gas diffusion and the interfacial chemical reaction. However, in later stages, the rate was controlled by the interfacial chemical reaction. The nature of the hydrogen reduction and the magnetic property changes for nickel cobalt ferrite were compared with the previous result for nickel ferrite. The microstructural development of the synthesized Fe-Ni-Co alloy with an increase in the reduction temperature improved its soft magnetic properties by increasing the saturation magnetization($M_s$) and by decreasing the coercivity($H_c$). The Fe-Ni-Co alloy showed higher saturation magnetization compared to Fe-Ni alloy.

Supplement of High Protein-Enriched Diet Modulates the Diversity of Gut Microbiota in WT or PD-1H-Depleted Mice

  • Xie, Yajun;Zhao, Ping;Han, Zhigang;Li, Wei;Shi, Dan;Xu, Lei;Yi, Qiying
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.207-216
    • /
    • 2021
  • Supplement of high-protein food plays an important role in improving the symptoms of malnutrition and the immune capacity of the body, but the association of high-protein diet and gut microbiota remained unaddressed. Here, we systematically analyzed the internal organs and gut microbiota in C57(WT) or PD-1H-depleted (KO) mice (T cells were activated) fed with pupae or feed for six weeks. We observed that the body weight gain in the mice fed with pupae increased less significantly than that of the feed group, while the villi and small intestine lengths in the pupa group were reduced compared with that of mice given feed. However, the average body weight of the KO mice increased compared with that of the WT mice fed with pupae or feed. Pupae increased the concentration of blood glucose in WT, but not in KO mice. Moreover, in the feed group, there was no difference in the weight of the internal organs between the WT and KO mice, but in the pupae-fed group, liver weight was decreased and spleen weight was increased compared with that of KO mice. The amounts/plural/amounts of Melainabacteria, Chloroflexi, and Armatimonadetes were specifically upregulated by pupae, and this upregulation was weakened or eliminated by PD-1H depletion. Some bacteria with high abundance in the feed-fed KO mice, such as Deferribacteres, Melainabacteria, Acidobacteria, Bacteroidetes, Spirochaetes and Verrucomicrobia, were decreased in pupae-fed KO mice, and Proteobacteria and Deinococcus were specifically enriched in pupae-fed KO mice. Bacteroidetes, Firmicutes and Akkermansia were associated with weight loss in the pupae-fed group while Lachnospiraceae and Anaerobiospirillum were related glucose metabolism and energy consumption. Based on high-throughput sequencing, we discovered that some gut bacteria specifically regulated the metabolism of a high-protein diet, and PD-1H deficiency improved life quality and sustained blood glucose. Moreover, PD-1H responses to high-protein diet through modulating the type and quantity of gut bacteria. These findings provide evidence about the association among gut microbiota, T cell activation (for PD-1H depletion) and high-protein diet metabolism, have important theoretical significance for nutrition and health research.