DOI QR코드

DOI QR Code

Synthesis and Magnetic Property of Nanocrystalline Fe-Ni-Co Alloys during Hydrogen Reduction of Ni0.5Co0.5Fe2O4

Ni0.5Co0.5Fe2O4의 수소환원에 의한 나노구조 Fe-Ni-Co 합금의 제조 및 자성특성

  • Paek, Min Kyu (Department of Metallurgical and Materials Engineering, Hanyang University) ;
  • Do, Kyung Hyo (Department of Metallurgical and Materials Engineering, Hanyang University) ;
  • Bahgat, Mohamed (Minerals Technology Department, Central Metallurgical Research and Development Institute(CMRDI)) ;
  • Pak, Jong Jin (Department of Metallurgical and Materials Engineering, Hanyang University)
  • 백민규 (한양대학교 금속재료공학과) ;
  • 도경효 (한양대학교 금속재료공학과) ;
  • ;
  • 박종진 (한양대학교 금속재료공학과)
  • Received : 2010.11.17
  • Published : 2011.02.25

Abstract

Nickel cobalt ferrite($Ni_{0.5}Co_{0.5}Fe_2O_4$) powder was prepared through the ceramic route by the calcination of a stoichiometric mixture of NiO, CoO and $Fe_2O_3$ at $1100^{\circ}C$. The pressed pellets of $Ni_{0.5}Co_{0.5}Fe_2O_4$ were isothermally reduced in pure hydrogen at $800{\sim}1100^{\circ}C$. Based on the thermogravimetric analysis, the reduction behavior and the kinetic reaction mechanisms of the synthesized ferrite were studied. The initial ferrite powder and the various reduction products were characterized by X-ray diffraction, scanning electron microscopy, reflected light microscope and vibrating sample magnetometer to reveal the effect of hydrogen reduction on the composition, microstructure and magnetic properties of the produced Fe-Ni-Co alloy. The arrhenius equation with the approved mathematical formulations for the gas solid reaction was applied to calculate the activation energy($E_a$) and detect the controlling reaction mechanisms. In the initial stage of hydrogen reduction, the reduction rate was controlled by the gas diffusion and the interfacial chemical reaction. However, in later stages, the rate was controlled by the interfacial chemical reaction. The nature of the hydrogen reduction and the magnetic property changes for nickel cobalt ferrite were compared with the previous result for nickel ferrite. The microstructural development of the synthesized Fe-Ni-Co alloy with an increase in the reduction temperature improved its soft magnetic properties by increasing the saturation magnetization($M_s$) and by decreasing the coercivity($H_c$). The Fe-Ni-Co alloy showed higher saturation magnetization compared to Fe-Ni alloy.

Keywords

References

  1. W. Tremel, H.Kleinke, Derstroff, and C. Reisner, J. Alloys Compd. 219, 73 (1995). https://doi.org/10.1016/0925-8388(94)05064-3
  2. N. Grobert, M. Mayne, M. Terrones, J. Sloan, R. Kamalakaran, T. Seeger, H. Terrones, N. Ruhle, H. W. Kroto, and J. Hutchison, Chem. Commun., 471 (2001).
  3. S. Vitta, A. Khuntia, G. Ravikumar, and D. Bahadur, J. Magn. Magn. Mater. 320, 182 (2008). https://doi.org/10.1016/j.jmmm.2007.05.021
  4. J. W. Kim and D. R. Kim, J. Kor. Inst. Met. & Mater. 42, 760 (2004).
  5. H. V. Venkatasetty, J. Electrochem. Soc. 117, 403 (1970). https://doi.org/10.1149/1.2407524
  6. L. T. Romankiw, I. M. Crolland, and M. Hatzakis, IEEE Transactions on Magnetics 6, 597 (1970). https://doi.org/10.1109/TMAG.1970.1066881
  7. B. H. Lee, B. S. Ahn, D. G. Kim, and Y. D. Kim, J. Kor. Powder Met. Ins. 9, 182 (2002). https://doi.org/10.4150/KPMI.2002.9.3.182
  8. T. Pikula, D. Oleszak, M. Pekata, and E. Jartych, J. Magn. Magn. Mater. 320, 413 (2008). https://doi.org/10.1016/j.jmmm.2007.06.020
  9. T. Osaka, Electrochimica Acta, 45, 3311 (2000). https://doi.org/10.1016/S0013-4686(00)00407-2
  10. J. H. Zhu, S. J. Geng, and D. A. Ballard, Int. J. Hydrogen Energy 32 3682 (2007) https://doi.org/10.1016/j.ijhydene.2006.08.026
  11. F. Mao-sheng, C. Lin-shen, L. Jian-guo, and C. Song-ying, J. Fuel Chem. Technol 35, 431 (2007). https://doi.org/10.1016/S1872-5813(07)60027-9
  12. D. Chen, D. Chen, X. Jiao, Y. Zhao, and M. He, Powder Tech. 133, 247 (2003). https://doi.org/10.1016/S0032-5910(03)00079-2
  13. I. Gul, F. Amin, A. Z. Abbasi, and A. Maqsood, Scripta Mater. 56, 497 (2007). https://doi.org/10.1016/j.scriptamat.2006.11.020
  14. L. Juan, L. Shen-Chen, and S. Ying-Chen, J. Phys. Chem. Solids 68, 1330 (2007). https://doi.org/10.1016/j.jpcs.2007.02.022
  15. J. Fang, N. Shama, L. D. Tung, E. Y. Shin, and J. Tang, J. Appl. Phys. 93, 7483 (2003). https://doi.org/10.1063/1.1555394
  16. M. Shobana, V. Rajendran, K. Jeyasubramanian, and N. Suresh Kumar, Mater. Lett. 61, 2616 (2007). https://doi.org/10.1016/j.matlet.2006.10.008
  17. S. Ebrahimi, C. Ponton, and I.harris, J. Mater. Sci. 34, 45 (1999). https://doi.org/10.1023/A:1004449120992
  18. Y. Li, E. R. Maxey, J. W. Richardson Jr., and B. Ma, J. Mater. Sci. Eng. B 106, 6 (2004). https://doi.org/10.1016/j.mseb.2003.07.004
  19. M. Bahgat, Mineral Processing and Extractive Metallurgy. 115, 195 (2006). https://doi.org/10.1179/174328506X148920
  20. M. K. Paek, K. H. Do, M. Bahgat, and J. J. Pak, Kor. J. Met. Mater. 49, 52 (2011). https://doi.org/10.3365/KJMM.2011.49.1.052
  21. J. Szekely, J. Evans, and H. Y. Sohn, Gas Solid Reactions, 129, AcademicPress, NewYork (1976).
  22. B. D. Cullity, Introduction to Magnetic Materials, 697, Addison-Wesley Publishing Com. (1972).
  23. G. Herzer, IEEE Transactions on Magnetics 25, 3327 (1989). https://doi.org/10.1109/20.42292
  24. S. Singhal, J. Singh, S. K. Barthwal, and K. Chandra, J. Solid State Chem. 178, 3183 (2005). https://doi.org/10.1016/j.jssc.2005.07.020
  25. Y. M. Yakovlev, E. V. Rubalikaya, and N. Lapovok, Sov. Phys. Sol. State 10, 2301 (1969).