Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.2.167

Synthesis and Magnetic Property of Nanocrystalline Fe-Ni-Co Alloys during Hydrogen Reduction of Ni0.5Co0.5Fe2O4  

Paek, Min Kyu (Department of Metallurgical and Materials Engineering, Hanyang University)
Do, Kyung Hyo (Department of Metallurgical and Materials Engineering, Hanyang University)
Bahgat, Mohamed (Minerals Technology Department, Central Metallurgical Research and Development Institute(CMRDI))
Pak, Jong Jin (Department of Metallurgical and Materials Engineering, Hanyang University)
Publication Information
Korean Journal of Metals and Materials / v.49, no.2, 2011 , pp. 167-173 More about this Journal
Abstract
Nickel cobalt ferrite($Ni_{0.5}Co_{0.5}Fe_2O_4$) powder was prepared through the ceramic route by the calcination of a stoichiometric mixture of NiO, CoO and $Fe_2O_3$ at $1100^{\circ}C$. The pressed pellets of $Ni_{0.5}Co_{0.5}Fe_2O_4$ were isothermally reduced in pure hydrogen at $800{\sim}1100^{\circ}C$. Based on the thermogravimetric analysis, the reduction behavior and the kinetic reaction mechanisms of the synthesized ferrite were studied. The initial ferrite powder and the various reduction products were characterized by X-ray diffraction, scanning electron microscopy, reflected light microscope and vibrating sample magnetometer to reveal the effect of hydrogen reduction on the composition, microstructure and magnetic properties of the produced Fe-Ni-Co alloy. The arrhenius equation with the approved mathematical formulations for the gas solid reaction was applied to calculate the activation energy($E_a$) and detect the controlling reaction mechanisms. In the initial stage of hydrogen reduction, the reduction rate was controlled by the gas diffusion and the interfacial chemical reaction. However, in later stages, the rate was controlled by the interfacial chemical reaction. The nature of the hydrogen reduction and the magnetic property changes for nickel cobalt ferrite were compared with the previous result for nickel ferrite. The microstructural development of the synthesized Fe-Ni-Co alloy with an increase in the reduction temperature improved its soft magnetic properties by increasing the saturation magnetization($M_s$) and by decreasing the coercivity($H_c$). The Fe-Ni-Co alloy showed higher saturation magnetization compared to Fe-Ni alloy.
Keywords
magnetic materials; chemical synthesis; hydrogen; X-ray diffraction; reduction kinetics;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 B. H. Lee, B. S. Ahn, D. G. Kim, and Y. D. Kim, J. Kor. Powder Met. Ins. 9, 182 (2002).   DOI   ScienceOn
2 T. Pikula, D. Oleszak, M. Pekata, and E. Jartych, J. Magn. Magn. Mater. 320, 413 (2008).   DOI   ScienceOn
3 T. Osaka, Electrochimica Acta, 45, 3311 (2000).   DOI   ScienceOn
4 J. H. Zhu, S. J. Geng, and D. A. Ballard, Int. J. Hydrogen Energy 32 3682 (2007)   DOI   ScienceOn
5 F. Mao-sheng, C. Lin-shen, L. Jian-guo, and C. Song-ying, J. Fuel Chem. Technol 35, 431 (2007).   DOI   ScienceOn
6 D. Chen, D. Chen, X. Jiao, Y. Zhao, and M. He, Powder Tech. 133, 247 (2003).   DOI   ScienceOn
7 I. Gul, F. Amin, A. Z. Abbasi, and A. Maqsood, Scripta Mater. 56, 497 (2007).   DOI   ScienceOn
8 L. Juan, L. Shen-Chen, and S. Ying-Chen, J. Phys. Chem. Solids 68, 1330 (2007).   DOI   ScienceOn
9 J. Fang, N. Shama, L. D. Tung, E. Y. Shin, and J. Tang, J. Appl. Phys. 93, 7483 (2003).   DOI   ScienceOn
10 M. Shobana, V. Rajendran, K. Jeyasubramanian, and N. Suresh Kumar, Mater. Lett. 61, 2616 (2007).   DOI   ScienceOn
11 S. Ebrahimi, C. Ponton, and I.harris, J. Mater. Sci. 34, 45 (1999).   DOI   ScienceOn
12 Y. Li, E. R. Maxey, J. W. Richardson Jr., and B. Ma, J. Mater. Sci. Eng. B 106, 6 (2004).   DOI   ScienceOn
13 M. Bahgat, Mineral Processing and Extractive Metallurgy. 115, 195 (2006).   DOI   ScienceOn
14 M. K. Paek, K. H. Do, M. Bahgat, and J. J. Pak, Kor. J. Met. Mater. 49, 52 (2011).   DOI   ScienceOn
15 J. Szekely, J. Evans, and H. Y. Sohn, Gas Solid Reactions, 129, AcademicPress, NewYork (1976).
16 B. D. Cullity, Introduction to Magnetic Materials, 697, Addison-Wesley Publishing Com. (1972).
17 G. Herzer, IEEE Transactions on Magnetics 25, 3327 (1989).   DOI   ScienceOn
18 S. Singhal, J. Singh, S. K. Barthwal, and K. Chandra, J. Solid State Chem. 178, 3183 (2005).   DOI   ScienceOn
19 Y. M. Yakovlev, E. V. Rubalikaya, and N. Lapovok, Sov. Phys. Sol. State 10, 2301 (1969).
20 W. Tremel, H.Kleinke, Derstroff, and C. Reisner, J. Alloys Compd. 219, 73 (1995).   DOI   ScienceOn
21 N. Grobert, M. Mayne, M. Terrones, J. Sloan, R. Kamalakaran, T. Seeger, H. Terrones, N. Ruhle, H. W. Kroto, and J. Hutchison, Chem. Commun., 471 (2001).
22 S. Vitta, A. Khuntia, G. Ravikumar, and D. Bahadur, J. Magn. Magn. Mater. 320, 182 (2008).   DOI   ScienceOn
23 J. W. Kim and D. R. Kim, J. Kor. Inst. Met. & Mater. 42, 760 (2004).
24 H. V. Venkatasetty, J. Electrochem. Soc. 117, 403 (1970).   DOI
25 L. T. Romankiw, I. M. Crolland, and M. Hatzakis, IEEE Transactions on Magnetics 6, 597 (1970).   DOI