• Title/Summary/Keyword: encryption key

Search Result 987, Processing Time 0.029 seconds

Proxy Re-encryption based Secure Electronic Transaction (프록시 재암호화 기반의 안전한 전자지불시스템)

  • Go, Woong;Kwak, Jin
    • The Journal of Korean Association of Computer Education
    • /
    • v.15 no.1
    • /
    • pp.73-85
    • /
    • 2012
  • Presently, Enhanced electronic financial service are offered used open network due to development of IT and financial transactions. The protocol in this environments such as SET, SSL/TLS, and so on are electronic transaction protocol to perform electronic payment securely and efficiently. However, most users still does not know accurately how to use and potential problems. It especially has key management problem about generate session key for purchase products or payment. To solve this problem, we propose proxy re-encryption based secure electronic transaction to transmit payment and order information without addition session key.

  • PDF

A LEA Implementation study on UICC-16bit (UICC 16bit 상에서의 LEA 구현 적합성 연구)

  • Kim, Hyun-Il;Park, Cheolhee;Hong, Dowon;Seo, Changho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.4
    • /
    • pp.585-592
    • /
    • 2014
  • In this paper, we study the LEA[1] block cipher system in UICC-16bit only. Also, we explain a key-schedule function and encryption/decryption structures, propose an advanced modified key-scheduling, and perform LEA in UICC-16bit that we proposed advanced modified key-scheduling. Also, we compare LEA with ARIA that proposed domestic standard block cipher, and we evaluate the efficiency on the LEA algorithm.

Privacy-Preserving Key-Updatable Public Key Encryption with Keyword Search Supporting Ciphertext Sharing Function

  • Wang, Fen;Lu, Yang;Wang, Zhongqi;Tian, Jinmei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.266-286
    • /
    • 2022
  • Public key encryption with keyword search (PEKS) allows a user to make search on ciphertexts without disclosing the information of encrypted messages and keywords. In practice, cryptographic operations often occur on insecure devices or mobile devices. But, these devices face the risk of being lost or stolen. Therefore, the secret keys stored on these devices are likely to be exposed. To handle the key exposure problem in PEKS, the notion of key-updatable PEKS (KU-PEKS) was proposed recently. In KU-PEKS, the users' keys can be updated as the system runs. Nevertheless, the existing KU-PEKS framework has some weaknesses. Firstly, it can't update the keyword ciphertexts on the storage server without leaking keyword information. Secondly, it needs to send the search tokens to the storage server by secure channels. Thirdly, it does not consider the search token security. In this work, a new PEKS framework named key-updatable and ciphertext-sharable PEKS (KU-CS-PEKS) is devised. This novel framework effectively overcomes the weaknesses in KU-PEKS and has the ciphertext sharing function which is not supported by KU-PEKS. The security notions for KU-CS-PEKS are formally defined and then a concrete KU-CS-PEKS scheme is proposed. The security proofs demonstrate that the KU-CS-PEKS scheme guarantees both the keyword ciphertext privacy and the search token privacy. The experimental results and comparisons bear out that the proposed scheme is practicable.

A Study on the Encryption and Decryption Using Pseudo-Random One-Time Pad (의사 랜덤 one-time pad를 이용한 암호화 및 복호화에 관한 연구)

  • 허비또;조현묵;백경갑;백인천;차균현
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1991.10a
    • /
    • pp.100-102
    • /
    • 1991
  • In this paper, we use LFSR(Linear Feedback Shift Register) as a kind of pseudo-random one-time pad. Key generator is constructed using r separate LFSR's with IP(Irreducible Polynominal) which are relatively prime. Key generated in this method has high linear complexity. And also, file cryptosystem for file encryption and decryption is constructed.

The properties Analysis of IDEA algorithm (IDEA 알고리즘의 특성 분석)

  • 김지홍;장영달;윤석창
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.3A
    • /
    • pp.399-405
    • /
    • 2000
  • In this paper, we deal with block cipher algorithm IDEA(international data encryption algorithm), previously known as typical block cipher system. first of all, analysing key scheduler we classify the key sequences with the used key bit and the unused key bits in each round. with this properties we propose the two method, which are differential analysis using differences of plaintext pairs and linear analysis using LSB bit of plaintexts and key sequences.

  • PDF

Concepts and Challenges of Quantum Key Distribution (양자 키 분배의 개념과 과제)

  • Ko, Min-hyuk;Kim, Do-hyun;Lee, Daesung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.114-115
    • /
    • 2021
  • In this paper, we would like to introduce the basic concepts of quantum key distribution techniques so far and the problems that need to be technically advanced. Quantum key distribution technology is a technology that generates non-tapable encryption keys and distributes them to both sender and receiver using the characteristics of Quantum, which is the minimum unit of physical quantity that can no longer be split. We would like to introduce BB84 protocol, a representative protocol of this technology, to explore realistic difficulties and future challenges.

  • PDF

Memory-Efficient Hypercube Key Establishment Scheme for Micro-Sensor Networks

  • Lhee, Kyung-Suk
    • ETRI Journal
    • /
    • v.30 no.3
    • /
    • pp.483-485
    • /
    • 2008
  • A micro-sensor network is comprised of a large number of small sensors with limited memory capacity. Current key-establishment schemes for symmetric encryption require too much memory for micro-sensor networks on a large scale. In this paper, we propose a memory-efficient hypercube key establishment scheme that only requires logarithmic memory overhead.

  • PDF

Encryption and Compression Design of The COMS

  • Seo Seok-Bae;Park Durk-Jong;Kang Chi-Ho;Ku In-Hoi;Ahn Sang-IL
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.264-267
    • /
    • 2005
  • COMS (Communication, Ocean, and Meteorological Satellite) will be launch at end of year 2008. For speedy and security communication of COMS, KARl (Korea Aerospace Research Institute) decided encryption and compression design. Encryption design is based on DES (Data Encryption Standard), so that encryption key generation and management are important issues in COMS operation. And Compression is based on loss and lossless JPEG (Joint Photographic Export Group) standard. JPEG is one of generally using compression algorithm in image.

  • PDF

Gradual Encryption of Medical Image using Non-linear Cycle and 2D Cellular Automata Transform

  • Nam, Tae Hee
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.11
    • /
    • pp.1279-1285
    • /
    • 2014
  • In this paper, we propose on image encryption method which uses NC(Non-linear Cycle) and 2D CAT(Two-Dimensional Cellular Automata Transform) in sequence to encrypt medical images. In terms of the methodology, we use NC to generate a pseudo noise sequence equal to the size of the original image. We then conduct an XOR operation of the generated sequence with the original image to conduct level 1 NC encryption. Then we set the proper Gateway Values to generate the 2D CAT basis functions. We multiply the generated basis functions by the altered NC encryption image to conduct the 2nd level 2D CAT encryption. Finally, we verify that the proposed method is efficient and extremely safe by conducting an analysis of the key spatial and sensitivity analysis of pixels.

Hardware Software Co-Simulation of the Multiple Image Encryption Technique Using the Xilinx System Generator

  • Panduranga, H.T.;Naveen, Kumar S.K.;Sharath, Kumar H.S.
    • Journal of Information Processing Systems
    • /
    • v.9 no.3
    • /
    • pp.499-510
    • /
    • 2013
  • Hardware-Software co-simulation of a multiple image encryption technique shall be described in this paper. Our proposed multiple image encryption technique is based on the Latin Square Image Cipher (LSIC). First, a carrier image that is based on the Latin Square is generated by using 256-bits of length key. The XOR operation is applied between an input image and the Latin Square Image to generate an encrypted image. Then, the XOR operation is applied between the encrypted image and the second input image to encrypt the second image. This process is continues until the nth input image is encrypted. We achieved hardware co-simulation of the proposed multiple image encryption technique by using the Xilinx System Generator (XSG). This encryption technique is modeled using Simulink and XSG Block set and synthesized onto Virtex 2 pro FPGA device. We validated our proposed technique by using the hardware software co-simulation method.