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Abstract 

 
Public key encryption with keyword search (PEKS) allows a user to make search on 
ciphertexts without disclosing the information of encrypted messages and keywords. In 
practice, cryptographic operations often occur on insecure devices or mobile devices. But, 
these devices face the risk of being lost or stolen. Therefore, the secret keys stored on these 
devices are likely to be exposed. To handle the key exposure problem in PEKS, the notion of 
key-updatable PEKS (KU-PEKS) was proposed recently. In KU-PEKS, the users’ keys can be 
updated as the system runs. Nevertheless, the existing KU-PEKS framework has some 
weaknesses. Firstly, it can’t update the keyword ciphertexts on the storage server without 
leaking keyword information. Secondly, it needs to send the search tokens to the storage server 
by secure channels. Thirdly, it does not consider the search token security. In this work, a new 
PEKS framework named key-updatable and ciphertext-sharable PEKS (KU-CS-PEKS) is 
devised. This novel framework effectively overcomes the weaknesses in KU-PEKS and has 
the ciphertext sharing function which is not supported by KU-PEKS. The security notions for 
KU-CS-PEKS are formally defined and then a concrete KU-CS-PEKS scheme is proposed. 
The security proofs demonstrate that the KU-CS-PEKS scheme guarantees both the keyword 
ciphertext privacy and the search token privacy. The experimental results and comparisons 
bear out that the proposed scheme is practicable. 
 
 
Keywords: Public key encryption with keyword search, key exposure, key update, 
ciphertext sharing. 
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1. Introduction 

In the wake of the rapid universal application of cloud storage, a growing number of 
enterprises and users are choosing to preserve the data in the cloud. The cloud provides users 
with more efficient and flexible data services while reducing the cost of data storage. 
Nevertheless, the cloud storage servers are untrusted for the data owners. Therefore, the data 
owners may choose to encrypt the data and upload the ciphertexts to the cloud storage server. 
But as a result, users face the question of how to retrieve the ciphertexts. The user can choose 
to download all ciphertexts to the local storage, and retrieve the data plaintexts after decryption. 
This method is obviously inefficient. It not only requires high communication and computation 
overhead, but also takes up a lot of local storage space. Another method is that the user sends 
the storage server the decryption key, then the storage server decrypts the ciphertexts and 
searches on the plaintexts, which obviously loses the meaning of encryption. 

In order to handle the ciphertext retrieval issue, searchable encryption was proposed [1]. 
Searchable encryption allows users to retrieve the ciphertexts by keywords without revealing 
any information about the plaintexts. It can be implemented over symmetric encryption or 
public key encryption. In 2000, Song et al. [1] first brought a symmetric searchable encryption 
scheme. Subsequently, many improved symmetric searchable encryption schemes [2-6] were 
devised. Although these symmetric searchable encryption schemes have high execution 
efficiency, they encounter the difficulty in key distribution. The mechanism of public key 
encryption with keyword search (PEKS), invented by Boneh et al. [7], allows a ciphertext 
receiver to authorize a storage server to verify whether the ciphertexts sent to them contain 
specific keyword(s). In PEKS, a user sends the encrypted data to a storage server. If a recipient 
intends to get some data ciphertexts that involve a specific keyword w, it can produce a search 
token Tw of the keyword w by its own secret key. Then the recipient sends the storage server 
the search token Tw. Once receiving Tw, the storage server can use the search token to match 
the ciphertexts without decryption. In the end, the storage server sends the retrieved ciphertexts 
to the recipient. After the concept of PEKS was put forward, various PEKS schemes and 
variants have been proposed [8-19]. In PEKS, the search tokens need to be conveyed over 
secure channels to the storage server. If the search tokens are captured by the attacker, then 
the indistinguishability of the keyword ciphertexts will be broken. Nevertheless, it is costly to 
establish a secure channel, especially over an open network. In [20], Beak et al. introduced the 
framework of secure channel free PEKS (SCF-PEKS) which does not require transmitting the 
search tokens through secure channels. In SCF-PEKS, the user needs to use both the public 
keys of the recipient and the designated storage server to encrypt the keyword to create the 
keyword ciphertext. Thus, only the designated server can execute the search operation by its 
secret key. Due to the characteristic of no secure channel, several SCF-PEKS schemes have 
also been presented [21-26]. Apart from this, some works [27-33] introduced PEKS into other 
public key cryptosystems. 

The security of a cryptosystem mainly depends on the confidentiality of secret keys. Once 
a secret key is leaked, the security of entire cryptosystem may not be guaranteed. However, 
cryptographic computations are often performed on some relatively insecure devices which 
cannot guarantee the secrecy of secret keys. Therefore, key disclosure seems to be inevitable. 
To overcome the key disclosure issue in PEKS setting, Anada et al. [34] put froward the 
concept of key-updatable PEKS (KU-PEKS). They also gave a generic KU-PEKS construction 
that combines a PEKS scheme with a public key encryption (PKE) scheme. In KU-PEKS, 
each user can update his/her public and secret keys as the system runs. Once re-keying occurs, 
the cloud server refreshes the ciphertexts stored on it by the decrypt-then-encrypt operations. 
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Up to now, KU-PEKS is the only framework supporting the key update function in PEKS 
setting. 

1.1 The Motivation and Contributions 
Although KU-PEKS realizes the key update function in PEKS, it suffers from three security 
weaknesses.  

1) KU-PEKS does not provide privacy-preserving ciphertext update function on the storage 
server. As we know, it is required that a keyword search encryption scheme should protect the 
keyword privacy. However, the KU-PEKS scheme proposed in [34] completely exposes the 
keyword information to the storage server when implementing ciphertext update. To update 
the ciphertexts, the storage server in KU-PEKS should first decrypt the old ciphertexts to get 
the encrypted keywords, and then re-encrypt the keywords using the new public key to produce 
the new keyword ciphertexts. Therefore, KU-PEKS fails in protecting the privacy of keywords. 

2) KU-PEKS should transmit the search tokens secretly. In order to successfully retrieve 
the desired ciphertext, a user in KU-PEKS should send a search token to the storage server. 
However, the user should use a secure channel to transmit the search token. If not, the search 
token may be intercepted by an adversary and then is used to break the keyword ciphertext 
indistinguishability. Therefore, KU-PEKS is not suitable for the scenarios where establishing 
a secure channel is difficult or impossible.  

3) KU-PEKS did not consider the search token indistinguishability. As Rhee et al. pointed 
out in [24], a PEKS scheme should meet the indistinguishability of keyword ciphertext/search 
token. If a PEKS scheme does not have the search token indistinguishability, it can’t endure 
the keyword guessing attack by the outside attacker (OUT-KGA). In [34], Anada et al. 
constructed the KU-PEKS scheme by integrating a PEKS scheme into a PKE scheme. 
Unfortunately, the vast majority of PEKS schemes were not proven to be search token 
indistinguishable. Therefore, the KU-PEKS scheme proposed in [34] is fragile to the OUT-
KGA.  

In this work, a privacy-preserving key-updatable public key searchable encryption scheme 
is devised. The presented scheme surmounts the weaknesses in the existing KU-PEKS 
framework and supports the ciphertext sharing function that is not considered in Anada et al.’s 
KU-PEKS scheme. Specifically, the contributions are as below: 

1) A new PEKS framework called key-updatable and ciphertext-sharable PEKS (KU-CS-
PEKS) is proposed. Compared with KU-PEKS, the proposed framework enjoys the following 
three merits. Firstly, KU-CS-PEKS provides privacy-preserving ciphertext update function on 
the storage server. To update the ciphertexts without decryption, proxy re-encryption [36–37] 
is incorporated into the framework. Since the storage server is absolutely ignorant of the 
keywords encrypted in the keyword ciphertexts during ciphertext updating, KU-CS-PEKS 
effectively protects the privacy of the keywords. Secondly, KU-CS-PEKS removes the 
requirement of secure channel in search token transmission. KU-CS-PEKS employs a 
designated storage server to perform the match-testing operation by its secret key. Since the 
outside attacker cannot run the testing operation, it cannot break the indistinguishability of 
keyword ciphertext even if it intercepts the corresponding search token. Therefore, a public 
channel can be used to transmit the search tokens. Thirdly, KU-CS-PEKS offers the ciphertext 
sharing function. In KU-PEKS, only the data owner can access the ciphertexts. However, in 
practice, the data owner often needs to share his/her ciphertexts to other users.  In KU-CS-
PEKS, by authorizing the storage server to act as a re-encryption proxy, the data owner can 
share his/her ciphertexts with others. In this way, the authorized users also can access and 
retrieve the re-encrypted ciphertexts on the storage server. After giving the framework of KU-
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CS-PEKS, the security model of KU-CS-PEKS is formalized, which captures both the 
indistinguishability of keyword ciphertext and search token. 

2) A concrete KU-CS-PEKS scheme is developed. The security proofs show that: i) under 
the hardness assumption of the bilinear Diffie-Hellman inversion (BDHI) problem [38], it 
satisfies the original ciphertext indistinguishability and the re-encryption ciphertext 
indistinguishability; ii) under the hardness assumption of the hash Diffie-Hellman (HDH) 
problem [39], it satisfies the data owner’s search token indistinguishability and the authorized 
user’s search token indistinguishability. In addition, the KU-CS-PEKS scheme is compared 
with the existing KU-PEKS scheme to show its merits and applicability.  

2. Preliminaries  
In this section, some preliminaries that used in the paper are reviewed. 

Assuming that G and GT denote two multiplicative cyclic groups both with a prime order 
p, g denotes a random generator of G, and e: G × G → GT is a bilinear map satisfying the 
following characteristics: 

(1) Bilinearity: ∀m, n ∈ G and x, y ∈ *
pZ , e(mx, ny) = e(m, n)xy. 

(2) Non-degeneracy: ∃m, n ∈ G, e(m, n) ≠ 1. 
(3) Computability: ∀m, n ∈ G, e(m, n) can be calculated by an efficient algorithm. 
Definition 1. The BDHI problem is: Inputting two elements (g, gα), to calculate e(g, g)1/α, 

where α ∈ Zq.  
Definition 2. The HDH problem is: Inputting four elements (g, gα, gβ, H(gγ)) ∈ G × G × G 

× {0, 1}hlen and a hash function H: G → {0, 1}hlen, to output “1” if αβ = γ or “0” otherwise, 
where α, β, γ ∈ *

pZ and hlen ∈ Z+.  

3. Framework and security model of KU-CS-PEKS  

3.1 Framework definition 
A KU-CS-PEKS scheme includes four entities: a global parameter generator (GPG), a 
designated storage server, a data owner and an authorized user. The GPG is responsible for 
producing the global parameters for the whole system. The data owner produces the keyword 
ciphertext as well as the data ciphertext, then transmits the keyword ciphertext and the data 
ciphertext to the designated storage server. The data owner also generates both the update key 
and the re-encryption key which are transmit to the designated storage server. When receiving 
an update key or a re-encryption key, the designated storage server can update or re-encrypt 
the ciphertexts. When the designated storage server gets a search token from the data owner 
or the authorized user, it seeks out and returns all matching data ciphertexts.  

Definition 3. A KU-CS-PEKS scheme is specified by ten algorithms that are shown below: 
(1) GlobalSetup(λ): Given as input a security parameter λ, the GPG executes the algorithm 

and outputs a set of global parameters gp. 
(2) KeyGenserver(gp): Given gp, the designated storage server executes this algorithm to 

produce a pair of public/secret keys (PKS, SKS). 
(3) KeyGenuser(gp): Given gp, the user (either a data owner or an authorized user) executes 

the algorithm to produce a pair of public/secret keys (PKU, SKU). In the following paper, the 
public/secret key pairs of a data owner in two different time periods i and j are denoted by 
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(PKDO,i, SKDO,i) and (PKDO,j, SKDO,j) respectively, the public/secret key pair of an authorized 
user is (PKAU, SKAU) . 

(4) KWCiphertextGen(gp, w, PKS, PKDO,i): Given gp, a keyword w, the designated storage 
server’s public key PKS and the data owner’s public key PKDO,i, the data owner executes this 
algorithm to produce a keyword ciphertext ,

w
DO iCT which is valid only in the time period i. 

(5) UpdateKeyGen(gp, SKDO,i, SKDO,j): Given gp, two secret keys SKDO,i and SKDO,j in two 
different time periods i and j, the data owner executes this algorithm to produce an update key 
uki→j. The update key uki→j is then sent to the designated storage server. 

(6) CiphertextUpdate(gp, uki→j, ,
w

DO iCT  ): Given gp, an update key uki→j and a keyword 
ciphertext ,

w
DO iCT in the time period i, the designated storage server executes this algorithm to 

produce an update ciphertext w
jDOCT , for the time period j.  

(7) ReKeyGen(gp, SKDO,j, SKAU): Given gp, the data owner’s secret key SKDO,j and the 
authorized user’s secret key SKAU, the data owner and the authorized user executes this 
algorithm to produce a re-encryption key rkDO→AU in an interactive manner. 

(8) CiphertextShare(gp, w
jDOCT , , rkDO→AU): Given gp, a keyword ciphertext w

jDOCT , and a re-
encryption key rkDO→AU, the designated storage server executes this algorithm to produce a 
shared keyword ciphertext w

AUCT . Note that the keyword ciphertext w
AUCT is encrypted under 

the authorized user’s public key PKAU and the designated storage server’s public key PKS.  
(9) SearchTokenGen(gp, w′ , PKS, SKU): Given gp, a keyword w′ , the designated storage 

server’s public key PKS and a secret key SKU, the data owner or the authorized user executes 
the algorithm to produce a search token wT ′ , where SKU is either SKDO,j or SKAU. 

(10) Test(gp, CTw, wT ′ , SKS): Given gp, a keyword ciphertext CTw, a search token wT ′ and 
the designated storage server’s secret key SKS, the designated storage server executes this 
algorithm to output 1 if CTw matches wT ′ (i.e., w = w′ ) or 0 else, where CTw is either w

jDOCT , or
w
AUCT . 
If the following formulas are satisfied for any keyword w, then a KU-CS-PEKS scheme is 

correct. 
(1) If gp ← GlobalSetup(λ), (PKS, SKS) ← KeyGenserver(gp), (PKDO,i, SKDO,i) ← 

KeyGenuser(gp), (PKDO,j, SKDO,j) ← KeyGenuser(gp), ,
w

DO iCT ← KWCiphertextGen(gp, w, PKS, 
PKDO,i), uki→j ← UpdateKeyGen(gp, SKDO,i, SKDO,j), w

jDOCT , ← CiphertextUpdate(gp, uki→j, 

,
w

DO iCT  ), rkDO→AU ← ReKeyGen(gp, SKDO,j, SKAU), w
AUCT ← CiphertextShare(gp, w

jDOCT ,  , 

rkDO→AU),Tw ← SearchTokenGen(gp, w, PKS, SKDO,j), then 1 ← Test(gp, w
jDOCT , , Tw, SKS); 

(2) If gp ← GlobalSetup(λ), (PKS, SKS) ← KeyGenserver(gp), (PKDO,i, SKDO,i) ← 
KeyGenuser(gp), (PKDO,j, SKDO,j) ← KeyGenuser(gp), (PKAU, SKAU) ← KeyGenuser(gp), ,

w
DO iCT ← 

KWCiphertextGen(gp, w, PKS, PKDO,i), uki→j ← UpdateKeyGen(gp, SKDO,i, SKDO,j), w
jDOCT , ← 

CiphertextUpdate(gp, uki→j, ,
w

DO iCT  ), rkDO→AU ← ReKeyGen(gp, SKDO,j, SKAU), w
AUCT ← 

CiphertextShare(gp, w
jDOCT , , rkDO→AU), Tw ← SearchTokenGen(gp, w, PKS, SKAU), then 1 ← 

Test(gp, w
AUCT , Tw, SKS).  
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3.2 Security definitions 
A KU-CS-PEKS scheme should meet the indistinguishability of keyword ciphertext/search 
token. To formalize the security definitions of KU-CS-PEKS, four adversarial games (Game 
1 ~ Game 4) between an adversary Ai (i = 1, 2, 3, 4) and a challenger B are defined, where the 
adversary Ai is either a malicious designated storage server or an outsider attacker. Game 1 
defines the original keyword ciphertext indistinguishability under the adaptively chosen 
keyword attack (OKC-IND-CKA). Game 2 defines the re-encryption keyword ciphertext 
indistinguishability under the adaptively chosen keyword attack (RKC-IND-CKA). Game 3 
defines the data owner’s search token indistinguishability under the adaptively chosen 
keyword attack (DOST-IND-CKA). Game 4 defines the authorized user’s search token 
indistinguishability under the adaptively chosen keyword attack (AUST-IND-CKA). 

Game 1 (OKC-IND-CKA): In this game, B plays with A1 who models a designated storage 
server or an outsider attacker as below: 

Setup: B generates gp and (PKS, SKS) by running GlobalSetup(λ) and KeyGenserver(gp). 
Then, B gives A1 {gp, PKS} if it is an outside attacker or {gp, PKS, SKS} if it is a designated 
storage server. 

Phase 1: A1 is capable of making six oracle queries adaptively. 
- Uncorrupted key generation oracle Opk: With the input of a time period index i by the 

adversary, the challenger runs KeyGenuser(gp) to produce a key pair (PKDO,i, SKDO,i) of the data 
owner and then gives PKDO,i to A1. 

- Corrupted key generation oracle Osk: With the input of a time period index j by the 
adversary, the challenger runs KeyGenuser(gp) to produce a key pair (PKDO,j, SKDO,j) of the data 
owner and then gives (PKDO,j, SKDO,j) to A1. Here, it is restricted that A1 is disallowed to submit 
a same time period index to both Opk and Osk. 

- Update key generation oracle Ouk: With the input of two distinct time period indices (k, l) 
by the adversary, the challenger runs UpdateKeyGen(gp, SKDO,k, SKDO,l) to produce an update 
key ukk→l and then returns it to A1. As in [35], it is not allowed the update key queries to occur 
on a corrupted time period and an uncorrupted time period.  

- Update ciphertext generation oracle Ouc: With the input of two distinct time period indices 
(k, l) and an keyword ciphertext ,

w
DO kCT by the adversary where either both k and l are corrupted 

or both are uncorrupted, the challenger runs CiphertextUpdate(gp, ukk→l, ,
w

DO kCT ) to produce 
an update ciphertext ,

w
DO lCT and then returns it to A1.  

- Search token generation oracle Ost: With the input of a time period index i and a keyword 
w by the adversary, the challenger runs SearchTokenGen(gp, w, PKS, SKDO,i) to produce a 
search token Tw and outputs to A1. 

- Test oracle Ote: With the input of ( ,
w

DO iCT , ′wT ) by the adversary, the challenger runs 
Test(gp, ,

w
DO iCT , ′wT , SKS,) and then returns the result to A1. This oracle only allows the outside 

attacker to make queries. 
Challenge: Once the Phase 1 is finished, A1 inputs two distinct keywords (w0, w1) where 

|w0| = | w1| and a time period index i* to B. The restrictions are (1) A1 has never submitted the 
query Osk(i*); (2) A1 has never submitted the queries Ost(i*, w0) and Ost(i*, w1) if it is the 
designated data storage server; (3) For any time period j, A1 has never submitted the queries 
Ouk(i*, j) and Ost(j, w0) or the queries Ouk(i*, j) and Ost(j, w1) if it is the designated data storage 
server. The challenger B randomly picks b ∈ {0, 1}, calculates the ciphertext *,

bw
DO i

CT = 

KWCiphertextGen(gp, wb, *,DO i
PK , PKS) and sends it to A1.  
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Phase 2: A1 makes more oracle queries, but with the following constraints: (1) A1 is 
disallowed to ask Osk(i*); (2) A1 is disallowed to ask Ote( *,

bw
DO i

CT , *
1T ) if it is the outside attacker, 

where *
1T is the result of the query Ost(i*, w0) or Ost(i*, w1); (3) For any time period j, A1 is 

disallowed to ask Ote(Ouc(i*, j, *,
bw

DO i
CT ), *

2T ) if it is the outside attacker, where *
2T is the result 

of the query Ost(j, w0) or Ost(j, w1); (4) A1 is disallowed to ask Ost(i*, wb) if it is the designated 
data storage server; (5) For any time period j, A1 is disallowed to ask both Ouk(i*, j) and Ost(j, 
w0) or both Ouk(i*, j) and Ost(j, w1) if it is the designated data storage server; (6) For any time 
period j, A1 is disallowed to ask both Ouc(i*, j, *,

bw
DO i

CT ) and Ost(j, w0) or both Ouc(i*, j, *,
bw

DO i
CT ) 

and Ost(j, w1) if A1 is the designated data storage server. 
Guess: At last, A1 outputs a guess b′ and wins if b b′= . Its advantage is defined as 

1
( ) | Pr[ ] 1 / 2 |λ− − ′= = −OKC IND CKA

AAdv b b . 

Definition 4. For a KU-CS-PEKS scheme, if the advantage
1

− −OKC IND CKA
AAdv of any 

polynomial time adversary A1 is negligible, then the scheme is OKC-IND-CKA secure. 
Game 2 (RKC-IND-CKA): In this game, B plays with A2 who models a designated storage 

server or an outsider attacker as below: 
Setup: B generates gp, (PKS, SKS) and (PKDO,i, SKDO,i) by running GlobalSetup(λ), 

KeyGenserver(gp) and KeyGenuser(gp) respectively. Then, B gives A2 {gp, PKS, PKDO,i} if it is an 
outside attacker or {gp, PKS, SKS, PKDO,i} if it is a designated storage server. 

Phase 1: A2 is capable of making six oracle queries adaptively. 
- Uncorrupted key generation oracle Opk: When A2 queries this oracle, the challenger runs 

KeyGenuser(gp) to produce an authorized user’s public/secret key pair (PKAU, SKAU) and gives 
PKAU to A2. 

- Corrupted key generation oracle Osk: When A2 queries this oracle, the challenger runs 
KeyGenuser(gp) to produce an authorized user’s public/secret key pair (PKAU, SKAU) and gives 
(PKAU, SKAU) to A2. 

- Re-encryption key generation oracle Ork: With the input of (PKDO,i, PKAU) by the 
adversary, the challenger runs ReKeyGen(gp, SKDO,i, SKAU) to produce a re-encryption key 
rkDO→AU and then returns it to A2. 

- Share ciphertext generation oracle Osc: With the input of ( ,
w

DO iCT , rkDO→AU) by the 
adversary, the challenger runs CiphertextShare(gp, ,

w
DO iCT , rkDO→AU) to produce a share 

ciphertext w
AUCT and then returns it to A2. 

- Search token generation oracle Ost: With the input of (PKAU, w) by the adversary, the 
challenger runs SearchTokenGen(gp, w, PKS, SKAU) to produce a search token Tw and then 
returns it to A2. 

-Test oracle Ote: With the input of ( w
AUCT , Tw) by the adversary, the challenger runs Test(gp, 

w
AUCT , Tw, SKS) and returns the result to A2. 
Challenge: Once the Phase1 is finished, A2 inputs two distinct keywords (w0, w1) where 

|w0| = |w1| and a public key *
AUPK . The restrictions are (1) *

AUPK is from Opk; (2) A2 has never 
submitted the queries Ost( *

AUPK , w0) and Ost( *
AUPK , w1). B randomly picks b ∈ {0, 1}, 

calculates the ciphertext C* = KWCiphertextGen(gp, wb, PKS, *
AUPK ) and sends it to A2.  

Phase 2: A2 makes more oracle queries. The only restriction is that A2 has never submitted 
the queries Ost( *

AUPK , w0) and Ost( *
AUPK , w1). 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 1, January 2022                              273 

Guess: At last, A2 outputs a guess ′b and wins if b = b′ . A2’s advantage is defined to be 

2
( ) | Pr[ ] 1 / 2 |λ− − ′= = −RKC IND CKA

AAdv b b . 

Definition 5. For a KU-CS-PEKS scheme, if the advantage
2

− −RKC IND CKA
AAdv of any 

polynomial time adversary A2 is negligible, then the scheme is RKC-IND-CKA secure. 
Game 3 (DOST-IND-CKA): In this game, B plays with A3 who models an outside attacker 

as below: 
Setup: B generates gp and (PKS, SKS) by running GlobalSetup(λ) and KeyGenserver(gp) 

respectively. Then, B gives A3{gp, PKS}. 
Phase 1: A3 is capable of make queries to Opk, Osk, Ouk, Ouc, Ost and Ote adaptively. These 

queries are answered as in OKC-IND-CKA-Game. 
Challenge: Once the Phase1 is finished, A3 inputs two distinct keywords (w0, w1) where 

|w0| = |w1| and a time period index i* to B. The restrictions are (1) A3 has never submitted the 
query Osk(i*); (2) For any time period j, A3 has never submitted the queries Ouk(j, i*); (3) For 
any time period j, A3 has never submitted the queries Ouc(j, i*, 0

,
w

DO jCT ) and Ouc(j, i*, 1
,

w
DO jCT ). B 

randomly selects b ∈ {0, 1}, calculates a search token
bwT = SearchTokenGen(gp, wb, PKS,

*,DO i
SK ) and sends it to A3. 

Phase 2: A3 makes more oracle queries, but with the constraints: (1) A3 is disallowed to ask 
Osk(i*); (2) For any time period j, A3 is disallowed to ask Ouk(j, i*); (3) For any time period j, 
A3 is disallowed to ask Ouc(j, i*, 0

,
w

DO jCT ) and Ouc(j, i*, 1
,

w
DO jCT ). 

Guess: At last, A3 outputs a guess b′ and wins if b = b′ . Its advantage is defined to be 

3
( ) | Pr[ ] 1 / 2 |λ− − ′= = −DOST IND CKA

AAdv b b . 

Definition 6. For a KU-CS-PEKS scheme, if the advantage
3

− −DOST IND CKA
AAdv of any 

polynomial time adversary A3 is negligible, then the scheme is DOST-IND-CKA secure. 
Game 4 (AUST-IND-CKA): In this game, B plays with A4 who models an outside attacker 

as below: 
Setup: B generates gp, (PKS, SKS) and (PKDO,i, SKDO,i) by running GlobalSetup(λ) , 

KeyGenserver(gp) and KeyGenuser(gp) respectively. Then, B gives A4 {gp, PKS, PKDO,i}. 
Phase 1: A4 is capable of make queries to Opk, Osk, Ork, Osc, Ost and Ote adaptively. These 

queries are answered as in RKC-IND-CKA-Game. 
Challenge: Once the Phase1 is finished, A4 inputs two distinct keywords (w0, w1) where 

|w0| = |w1| and a public key *
AUPK . The restrictions are that: (1) *

AUPK is from Opk; (2) A4 has 
never submitted the queries Ork(PKDO,i, *

AUPK ); (3) A4 has never submitted the queries 
Osc( 0

,
w

DO iCT , *→DO AU
rk ) and Osc( 1

,
w

DO iCT , *→DO AU
rk ). B randomly selects b ∈ {0, 1}, calculates a 

search token
bwT = SearchTokenGen(gp, wb, PKS, *

AUSK )  and sends it to A4.   
Phase 2: A4 makes more oracle queries, but with the constraints: (1) A4 has never submitted 

the queries Ork(PKDO,i, *
AUPK ); (2) A4 has never submitted the queries Osc( 0

,
w

DO iCT , *→DO AU
rk ) 

and Osc( 1
,

w
DO iCT , *→DO AU

rk ). 
Guess: At last, A4 outputs a guess b′ and wins if b = b′ . Its advantage is defined as 

4
( ) | Pr[ ] 1 / 2 |λ− − ′= = −AUST IND CKA

AAdv b b . 

Definition 7. For a KU-CS-PEKS scheme, if the advantage
4

− −AUST IND CKA
AAdv of any 

polynomial time adversary A4 is negligible, then the scheme is AUST-IND-CKA secure. 
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4. The proposed KU-CS-PEKS scheme 

4.1 Description of the proposed scheme 
The proposed KU-CS-PEKS scheme is as below: 

(1) GlobalSetup(λ): Inputting λ, the algorithm generates two cyclic groups (G, GT) with 
order p and a bilinear pairing e: G × G → GT.  Additionally, it selects a generator g ∈ G and 
three cryptographic hash functions H: G →{0, 1}hlen, H1: {0, 1}* → G and H2: GT → {0, 1}hlen. 
Finally, it sets gp = {p, g, G, GT, e, H, H1, H2}. 

(2) KeyGenserver(gp): Inputting gp, this algorithm picks a ∈ *
pZ  at random, sets SKS = a, and 

calculates PKS = ga. It then outputs (PKS, SKS). 
(3) KeyGenuser(gp): Inputting gp, the algorithm picks xU ∈ *

pZ  at random, sets SKU = xU and 

PKU = Uxg . It then outputs (PKU, SKU). In the following algorithms, the data owner’s key pairs 
in different time periods i and j are denoted by (PKDO,i, SKDO,i) and (PKDO,j, SKDO,j) respectively, 
and the authorized user’s key pair is denoted by (PKAU, SKAU). 

(4) KWCiphertextGen(gp, w, PKS, PKDO,i): Inputting gp, w, PKS and PKDO,i, this algorithm 
randomly picks r ∈ *

pZ , calculates A = ,
r
DO iPK and B = H2(t), where t = e(PKS, H1(w))r. It then 

outputs ,
w

DO iCT = (A, B). 
(5) UpdateKeyGen(gp, SKDO,i, SKDO,j): Inputting gp, SKDO,i and SKDO,j, the data owner 

calculates a update key uki→j = SKDO,j / SKDO,i mod p. 
(6) CiphertextUpdate(gp, uki→j, ,

w
DO iCT ): Inputting gp, an update key uki→j and a keyword 

ciphertext ,
w

DO iCT = (A, B) of the time period i. The algorithm calculates ′A = i jukA → = ,DO jSK rg ⋅ = 

,
r
DO jPK and creates a new keyword ciphertext w

jDOCT , = ( ′A , B) for the time period j. 
(7) ReKeyGen(gp, SKDO,j, SKAU): Inputting gp, SKDO,j and SKAU, this algorithm generates a 

re-encryption key rkDO→AU = SKAU / SKDO,j mod p as below: The data owner picks n ∈ *
pZ  at 

random and sends (nSKDO,j mod p) to the authorized user; The authorized user calculates and 
sends SKAU / nSKDO,j mod p to the data owner; Finally, the data owner uses can calculate 
rkDO→AU = SKAU / SKDO,j mod p.  

(8) CiphertextShare(gp, w
jDOCT , , rkDO→AU): Inputting gp, w

jDOCT , and rkDO→AU, the algorithm 

calculates ′′A = DO AUrkA → = AUSKg = r
AUPK and creates a shared keyword ciphertext w

AUCT = ( ′′A , B) 
for the authorized user. 

(9) SearchTokenGen(gp, ′w , PKS, SKU): Inputting gp, ′w , PKS and SKU, the algorithm picks

′r ∈ *
pZ at random, calculates T1 = ′rg and T2 = 

1

1( )′ USKH w · ( )′r
SH PK .  It then outputs ′wT  = (T1, 

T2). 
(10) Test(gp, CTw, Tw, SKS): Inputting gp, CTw, ′wT  and SKS = a,, this algorithm first 

computes 2 1/ ( )τ = aT H T  and then tests if B= H2(e(A,τ a )). If yes, it returns 1, else, it returns 
0. 

Correctness: Assume the ciphertext of keyword w is CTw = ( r
UPK , H2(e(ga, H1(w))r))  and 

the search token associated to keyword ′w is 'wT  = ( 'rg , 
1

1( )′ USKH w · ( )′r
SH PK ).  If w = ′w , then 

B = H2(e(ga, H1(w))r) = 
1

2 1( ( ,( ( ) ) ))′ ′′x r axH e g H w  = 2 2 1( ( ,( / ( )) ))r a a
UH e PK T H T  = H2(e(A,τ a )). 
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Therefore, the KU-CS-PEKS scheme is correct. 

4.2 Security proofs 
Theorem 1. The KU-CS-PEKS scheme satisfies the OKC-IND-CKA security under the 

hardness assumption of the 1-BDHI problem in the random oracle model. 
Proof: Presuming that an adversary A1 can break the OKC-IND-CKA security of the KU-

CS-PEKS scheme with an advantage ε. Then an algorithm B can be created to solve the 1-
BDHI problem with advantage 

2
/ε ε′ = st Heq q , where

2Hq and qst respectively represent the 

largest number of A1’s queries to the oracles
2HO and Ost, and e denotes the base of the natural 

logarithm. Given an instance {p, g, G, GT, e, u1 = gy} of the 1-BDHI problem, B’s goal is to 
calculate 1/( , ) ye g g ∈ G.  

B plays with A1 as below:  
Setup: B picks a ∈ *

pZ at ransom, sets PKS = ga and SKS = a. Then, B gives gp = {p, g, G, 
GT, e, H, H1, H2} and PKS to A1 if it is an outside attacker or gp = {p, g, G, GT, e, H, H1, H2} 
and (PKS, SKS) if it is a designated data storage server, where H, H1 and H2 are three random 
oracles. 

Phase 1: A1 is capable of make these queries: 
- Random oracle HO : B holds a list H-list that is made up of the tuples <M, N>. When 

getting a query H(M) from A1, B outputs N if <M, N> is already in H-list. Otherwise, B 
randomly picks N ∈ {0, 1}hlen and sets H(M) = N. Finally, B records a new tuple <M, N> onto 
H-list and responds with N. 

- Random oracle
1HO : B holds a list H1-list that is made up of tuples <w, h, e, cion>. When 

getting a query H1(w) from A1, B outputs h if <w, h, e, cion> is already in the H1-list. Else, B 
randomly picks cion ∈ {0, 1} such that Pr[cion = 0] =1 / (qst + 1). Then, B randomly picks e 
∈ *

pZ  and calculates h = eg ∈ G if cion = 0 or h = 1( )eu = yeg ∈ G otherwise. Finally, B records 
a new tuple <w, h, e, cion> onto H1-list and responds with H1(w) = h.  

- Random oracle
2HO : B holds a list H2-list that is made up of the tuples <t, V>. When 

getting a query H2(t) from A1, B outputs V if <t, V> is already in H2-list. Otherwise, B randomly 
selects V ∈ {0, 1}hlen and sets H2(t) = V. Finally, B records a new tuple <t, V> onto H2-list and 
returns V. 

- Uncorrupted key generation oracle Opk: B holds a list LU that is made up of the tuples <i, 
PKDO,i, xi>. When A1 inputs a time period index i, B responds as below: 

B responds with PKDO,i, if i is already in the LU with a tuple <i, PKDO,i, xi>. 
Else, B randomly selects xi ∈ *

pZ and sets PKDO,i = ixg . Then B records the tuple <i, PKDO,i, 
xi> onto LU and returns PKDO,i. 

- Corrupted key generation oracle Osk: B holds a list LC that is made up of tuples <j, PKDO,j, 
xj>. When A1 inputs a time period index j and j ≠ i, algorithm B responds as below: 

If j is already in the LC with a tuple <j, PKDO,j, xj>, then B answers with (PKDO,j, SKDO,j = 
xj). 

Otherwise, B chooses xj ∈ *
pZ  at random and sets PKDO,j = jxg . Then B records the tuple <j, 

PKDO,j, xj> onto LC and returns (PKDO,j , SKDO,j = xj). 
- Update key generation oracle Ouk: With the input of two distinct time period indices (k, l) 

by the adversary. It is required that both PKDO,k and PKDO,l appear on the LU or LC, B responds 
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A1 with ukk→l = xl /xk.  
- Update ciphertext generation oracle Ouc: With the input of two distinct time period indices 

(k, l) and a keyword ciphertext ,
w

DO kCT by the adversary, PKDO,k and PKDO,l both appear on the 
LU or LC. B obtains the update key ukk→l = xl /xk from Ouk and returns the update ciphertext

,
w

DO lCT = (A, B) = ( ,
r
DO lPK , H2(e(PKS, H1(w))r)). 

- Search token generation oracle Ost: With the input of a time period index i and a keyword 
w by the adversary, algorithm B responds as follows: 

B gets from
1HO  a tuple <w, h, e, cion> from

1HO . If cion = 0, B ends the game. 

Else, B selects ′r ∈ *
pZ , ′y ∈ *

pZ  at random, sets T1 = ′rg and T2 = 1/
1( ) ′⋅e y yu  · ( )′r

SH PK  =
/ ( )′ ′⋅⋅e y a rg H g . Because PKU = 1( ) ′yu = ixg and 1/

1( ) ixH w  =
1/( ) ′⋅ ⋅y e y yg = / ′e yg , Tw = (T1, T2) is a 

valid search token for w. B responds A1 with Tw = (T1, T2). 
-Test oracle Ote: With the input of ( ,

w
DO lCT , ′wT ) by the adversary, the algorithm B outputs 

1 if B = H2(e(A,τ a ) holds or 0 otherwise.  
Challenge: Once the Phase1 is finish, A1 inputs two distinct keywords (w0, w1) where |w0| 

= |w1| and a time period index i* to B. B asks
1HO to obtain hb ∈ G such that H1(wb) = hb, where 

b ∈ {0, 1}. Let <wb, hb, eb, coinb> be the response tuple. If both coin0 = 1 and coin1 = 1, B ends 
the game. Else, B randomly picks ′k ∈ *

pZ and lets r = /′ ⋅k a y∈ *
pZ , and calculates A* = , *

r
DO iPK

= ( )′⋅y y rg  = /( )′ ′⋅ ⋅y y k a yg  = /′ ′⋅y k ag  ; chooses Z ∈{0, 1}hlen at random and sets B* = Z. Finally, it 
transmits the challenge ciphertext C* = (A*, B*) to A1. 

Phase 2: A1 makes more oracle queries, but with the constraints as defined in Game 1. 
Guess: At last, A1 outputs its guess ′b . Clearly, A1 may have issued a query 

2 1 2( ( , ( ))) ( ( , ) )
′
⋅= b

k
er a a x

S bH e PK H w H e g g . Therefore, it is possible that there exists one pair of 

the form 2 1( ( , ) , ( ( , ( ))))
′⋅be k

a rx
S be g g H e PK H w in H2-list. B picks a tuple <t, V> at random from 

H2-list and outputs 1/ ′⋅be kt as its solution to the given 1-BDHI problem.  
In order to analyze the advantage of B in solving the given 1-BDHI problem, three events 

are defined: 
1δ : B does not terminate for A1’s search token query; 

2δ : B does not terminate during Challenge Phase; 

3δ : A1 does not issue a query for either 2 1 0( ( , ( )))r
SH e PK H w or 2 1 1( ( , ( )))r

SH e PK H w . 
Clearly, 1Pr[ ] 1 1 / ( 1)δ = − +stq , since A1 makes at most qst search token queries, the 

probability that B does not abort as result of all search token queries is at least
(1 1 / ( 1)) 1 /− + ≥stq

stq e . 
In the challenge phase, Pr[ 0] 1 / ( 1)= = +b stc q where b ∈ {0, 1}.  Therefore, 

2
0 1Pr[ 1] (1 1 / ( 1)) 1 1 /= = = − + ≤ −st stc c q q . Thus, the probability of event 2δ is at least 1 / stq .  

Assuming that A1 does not query either 2 1 0( ( , ( )))r
SH e PK H w or 2 1 1( ( , ( )))r

SH e PK H w , then

3Pr[ | ] 1 / 2δ′= ¬ =b b .  According to the total probability formula: 

3 3 3 3Pr[ ] Pr[ | ]Pr[ ] Pr[ | ]Pr[ ]δ δ δ δ′ ′ ′= = = + = ¬ ¬b b b b b b  
3 3 3Pr[ | ]Pr[ ] Pr[ ]δ δ δ′≤ = + ¬b b  
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3
1 1 Pr[ ]
2 2

δ= + ¬ .  

Therefore, 3
1 1| Pr[ ] | Pr[ ]
2 2

b bε δ′≤ = − ≤ ¬ . Consequently, 3Pr[ ] 2δ ε¬ ≥  

Since the probability that B chooses the right tuple from H2-list is at least
2

1 / Hq , B’s success 
probability is at least

2
/ ( )ε st Heq q . 

Theorem 2. The KU-CS-PEKS scheme satisfies the RKC-IND-CKA security under the 
hardness assumption of the 1-BDHI problem in the random oracle model. 

Proof: Presuming that an adversary A2 can break the OKC-IND-CKA security of the KU-
CS-PEKS scheme with an advantage ε. Then an algorithm B can be created to solve the 1-
BDHI problem with advantage 

2
/ε ε′ = st Heq q , where

2Hq and qst respectively denote the 

largest number of A2’s queries to the oracles
2HO and Ost, and e is the base of the natural 

logarithm. Given an instance {p, g, G, GT, e, u1 = gy} of the 1-BDHI problem, B’s goal is to 
calculate 1/( , ) ye g g ∈ G.  

B plays with A2 as below: 
Setup: B picks a ∈ *

pZ at random, sets PKS = ga and SKS = a. Then, B gives gp = {p, g, G, 
GT, e, H, H1, H2} and PKS to A2 if it is an outside attacker or or gp = {p, g, G, GT, e, H, H1, H2} 
and (PKS, SKS) if it is a designated data storage server, where H, H1 and H2 are three random 
oracles. 

Phase 1: A2 is capable of make these queries: 
- Random oracle HO : B holds a list H-list that is made up of the tuples <M, N>. When 

getting a query H(M) from A2, B outputs N if <M, N> is already in H-list. Otherwise, B 
randomly picks N ∈ {0, 1}hlen and sets H(M) = N. Finally, B records a new tuple <M, N> onto 
H-list and responds with N. 

- Random oracle
1HO : B holds a list H1-list that is made up of tuples <w, h, e, cion>. When 

getting a query H1(w) from A2, B outputs h if <w, h, e, cion> is already in H1-list. Else, B 
randomly picks cion ∈ {0, 1} such that Pr[cion = 0] =1 / (qst + 1). Then, B randomly picks e 
and calculates h = eg ∈ G if cion = 0 or h = 1( )eu = yeg ∈ G otherwise. Finally, B records a new 
tuple <w, h, e, cion> onto H1-list and responds with H1(w) = h. 

- Random oracle
2HO : B holds a list H2-list that is made up of the tuples <t, V>. When 

getting a query H2(t) from A2, B outputs V if <t, V> is already in H2-list. Otherwise, B randomly 
selects V ∈ {0, 1}hlen and sets H2(t) = V. Finally, B records a new tuple <t, V> onto H2-list and 
returns V. 

- Uncorrupted key generation oracle Opk: B holds a list LU that is made up of the tuples 
<PKAU, xAU>. When A2 queries this oracle, B selects xAU ∈ *

pZ at random and sets PKAU = AUxg . 
B records the tuple <PKAU, xAU> onto LU and returns PKAU. 

- Corrupted key generation oracle Osk: B holds a list LC that is made up of the tuples <PKAU, 
xAU>. When A2 queries this oracle, B selects xAU ∈ *

pZ at random and sets PKAU = AUxg . B records 

the tuple <PKAU, xAU> onto LC and returns (PKAU = AUxg , SKAU = xAU). 
- Re-encryption key generation oracle Ork: With the input of (PKDO,i, PKAU) by the 

adversary, B returns the re-encryption key rkDO→AU = xAU / xi. 
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- Share ciphertext generation oracle Osc: With the input of ( ,
w

DO iCT , rkDO→AU) by the 

adversary, B returns the share ciphertext w
AUCT = (A, B) = ( r

AUPK , H2(e(PKS, H1(w))r)). 
- Search token generation oracle Ost: With the input of (w, PKAU) by the adversary, B 

responds as below: 
B gets from

1HO  a tuple <w, h, e, cion> from
1HO . If cion = 0, B ends the game. 

Else, h = 1( )eu . B selects ′r ∈ *
pZ , ′y ∈ *

pZ  at random, sets T1 = ′rg and T2 = 1/
1( ) ′⋅y yu  ·

( )′r
SH PK = / ( )′ ′⋅⋅e y a rg H g . Because PKU = 1( ) ′yu = ixg and 1/

1( ) ixH w = 1/( ) ′⋅ ⋅y e y yg = / ′e yg , Tw = (T1, 
T2) is a valid search token for w. B responds A2 with Tw = (T1, T2). 

-Test oracle Ote: With the input of ( ,
w

DO lCT , ′wT ) by the adversary, B outputs 1 if B = H2(e(A,
τ a ) holds or 0 otherwise.  

Challenge: Once the Phase1 is finished, A2 inputs two distinct keywords (w0, w1) where 
|w0| = |w1| and a time period index i* to B. B asks

1HO to obtain hb such that H1(wb) = hb, where 
b ∈ {0, 1}. Let <wb, hb, eb, coinb> be the response tuple. If both coin0 = 1 and coin1 = 1, B ends 
the game. Else, B randomly picks 'k ∈ *

pZ and lets r = /′ ⋅k a y∈ *
pZ , and calculates A* = , *

r
DO iPK

= ( )′⋅y y rg  = /( )′ ′⋅ ⋅y y k a yg  = /′ ′⋅y k ag  ; chooses Z ∈{0, 1}hlen at random and sets B* = Z. Finally, it 
responds with the challenge ciphertext C* = (A*, B*). 

Phase 2: A2 makes more oracle queries, but with the constraints as defined in Game 2. 
Guess: At last, A2 outputs a guess b′ ∈ {0, 1}. B randomly picks a tuple (t, V) from H2-list 

and outputs 1/ ′⋅be kt as its solution to the given 1-BDHI problem. 
Similar to the proof of Theorem 1, it can be deduced that the lower bound on B’s advantage 

is 
2

/ ( )td Heq qε . 
Theorem 3. The KU-CS-PEKS scheme satisfies the DOST-IND-CKA security under the 

hardness assumption of the HDH problem in the random oracle model. 
Proof: Presuming that an adversary A3 breaks the DOST -IND-CKA security of the KU-

CS-PEKS scheme with an advantage ε. Then an algorithm B can be created to solve the HDH 
problem with advantageε ε′ = . Given an instance {p, g, G, GT, e, ga, gb, η, H} of the HDH 
problem, where H: G → {0, 1}hlen is a hash function and η is either H(gab) or a random element 
of G. B’s goal is to decide whether η = H(gab).  

B plays with A3 as below: 
Setup: B picks a, l ∈ *

pZ at random, sets PKS = gal and SKS = al. Then, B gives gp = {p, g, 
G, GT, e, H, H1, H2} and PKS to A3, where H, H1 and H2 are three random oracles. 

Phase 1: A3 is capable of make these queries: 
- Random oracle HO : B holds a list H-list that is made up of the tuples <M, N>. When 

getting a query H(M) from A4, B outputs N if <M, N> is already in H-list. Otherwise, B 
randomly picks N ∈ {0, 1}hlen and sets H(M) = N. Finally, B records a new tuple <M, N> onto 
H-list and responds with N. 

- Random oracle
1HO : B holds a list H1-list that is made up of tuples <w, h>. When getting 

a query H1(w) from A4, B outputs h if <w, h> is already in H1-list. Otherwise, B randomly picks 
h ∈ G and sets H1(w) = h. Finally, B records a new tuple <w, h> onto H1-list and returns h. 

- Random oracle
2HO : B holds a list H2-list that is made up of the tuples <t, V>. When 

getting a query H2(t) from A4, B outputs V if <t, V> is already in H2-list. Otherwise, B randomly 
selects V ∈ {0, 1}hlen and sets H2(t) = V. Finally, B records a new tuple <t, V> onto H2-list and 
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returns V. 
- Uncorrupted key generation oracle Opk: B holds a list LU that is made up of the tuples <i, 

PKDO,i, xi>. When A3 inputs a time period index i, B responds as below: B responds with PKDO,i, 
if i is already in LU with a tuple <i, PKDO,i, xi>. Else, B randomly selects xi ∈ *

pZ and sets PKDO,i 

= ixg . Then B records the tuple <i, PKDO,i, xi> onto LU and returns PKDO,i. 
- Corrupted key generation oracle Osk: B holds a list LU of tuples <j, PKDO,j, xj>. When A3 

inputs a time period index j and j ≠ i, B responds as below: If j is already in LC with a tuple <j, 
PKDO,j, xj>, then B answers with (PKDO,j = jxg , SKDO,j = xj). Otherwise, B selects a random 

value xj and sets PKDO,j = jxg . Then B records the tuple <j, PKDO,j, xj> onto the LC and returns 

(PKDO,j = jxg , SKDO,j = xj). 
- Update key generation oracle Ouk: With the input of two distinct time period indices (k, l) 

by the adversary, PKDO,k and PKDO,l both appear on the LU or LC. B responds A3 with ukk→l = xl 
/xk. 

- Update ciphertext generation oracle Ouc: With the input of two distinct time period indices 
(k, l) and a keyword ciphertext ,

w
DO kCT by the adversary. PKDO,k and PKDO,l both appear on the 

LU or LC. B obtains the update key ukk→l = xl /xk from Ouk and returns the update ciphertext
,

w
DO lCT = (A, B) = ( ,

r
DO lPK , H2(e(PKS, H1(w))r)). 

- Search token generation oracle Ost: With the input of a time period index i and a keyword 
w by A3, B picks ′r ∈ *

pZ  at random and calculates T1 = ′rg and T2 = 1/
1( )′ ixH w · ( )′r

SH PK . B 
returns A3 with Tw = (T1, T2). 

-Test oracle Ote: With the input of ( ,
w

DO iCT , ′wT ) by the adversary, the algorithm B outputs 
1 if the equation B = H2(e(A,τ a ) holds or 0 otherwise.  

Challenge: Once the Phase1 is finish, A3 inputs two distinct keywords (w0, w1) where |w0| 
= |w1| and a time period index i*. B picks a value c ∈ {0, 1} at random and sets *

1T = /b lg  and 
*

2T = *1/
1( ) i

x
cH w η⋅ . Ifη =H(gab), then *

cwT is a valid challenge token. If r* = b / l, then *
1T = 

*rg ,
*

2T = *1/
1( ) i

x
cH w η⋅ = *,

1/

1( ) DO i
SK

cH w ﹒H(gab) = *,
1/

1( ) DO i
SK

cH w ﹒H( ( / )al b lg ⋅ ) = *,
1/

1( ) DO i
SK

cH w
( )′r

SH PK . Finally, it responds with the challenge token *
cwT = ( *

1T , *
2T ). 

Phase 2: A3 makes more oracle queries, but with the constraints as defined in Game 3. 
Guess: At last, A3 outputs a guess ′c . If c = ′c , B output 1, meaning that η = H(gab)or 0 

otherwise. 
The advantage of B in solving the given HDH problem is analyzed as below. 
According to Game 3, whenη =H(gab), the view of the adversary A3 in common with its 

guess ′c satisfies |Pr[c = ′c ]- 1/2| = ε. On the other side, whenη′ is uniform over G, its guess ′c
satisfies Pr[c = ′c ] = 1/2. Consequently, the advantage of B in solving the given HDH problem 
is |Pr[B(g, ga, gb, H(gab)) = 0] - Pr[B(g, ga, gb,η′ )) = 0]| ≧ |1/2 ± ε -1/2| = ε. 

Theorem 4. The KU-CS-PEKS scheme satisfies the AUST-IND-CKA security under the 
hardness assumption of the HDH problem in the random oracle model. 

Proof: Presuming that an adversary A4 breaks the AUST -IND-CKA security of the KU-
CS-PEKS scheme with an advantage ε. Then an algorithm B can be created to solve the HDH 
problem with advantageε ε′ = . Given an instance {p, g, G, GT, e, ga, gb, η, H} of the HDH 
problem, where H: G → {0, 1}hlen is a hash function and η is either H(gab) or a random element 
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of G. B’s goal is to decide whether η = H(gab). B plays with A4 as below: 
Setup: B randomly picks a, l ∈ *

pZ , sets PKS = gal and SKS = al. Then, B gives gp = {p, g, 
G, GT, e, H, H1, H2} and PKS to A4, where H, H1 and H2 are three random oracles. 

Phase 1: A4 is capable of make these queries: 
- Random oracle HO : B holds a list H-list that is made up of the tuples <M, N>. When 

getting a query H(M) from A4, B outputs N if <M, N> is already in H-list. Otherwise, B 
randomly picks N ∈ {0, 1}hlen and sets H(M) = N. Finally, B records a new tuple <M, N> onto 
H-list and responds with N. 

- Random oracle
1HO : B holds a list H1-list that is made up of tuples <w, h>. When getting 

a query H1(w) from A4, B outputs h if <w, h> is already in H1-list. Otherwise, B randomly picks 
h ∈ G and sets H1(w) = h. Finally, B records a new tuple <w, h> onto H1-list and returns h. 

- Random oracle
2HO : B holds a list H2-list that is made up of the tuples <t, V>. When 

getting a query H2(t) from A4, B outputs V if <t, V> is already in H2-list. Otherwise, B randomly 
selects V ∈ {0, 1}hlen and sets H2(t) = V. Finally, B records a new tuple <t, V> onto H2-list and 
returns V. 

- Uncorrupted key generation oracle Opk: B holds a list LU that is made up of the tuples 
<PKAU, xAU>. When A4 queries this oracle, B selects xAU ∈ *

pZ at random and sets PKAU = AUxg . 
B records the tuple <PKAU, xAU> onto LU and returns PKAU. 

- Corrupted key generation oracle Osk: B holds a list LC that is made up of the tuples <PKAU, 
xAU>. When A2 queries this oracle, B selects xAU ∈ *

pZ at random and sets PKAU = AUxg . B records 

the tuple <PKAU, xAU> onto LC and returns (PKAU = AUxg , SKAU = xAU). 
- Re-encryption key generation oracle Ork: With the input of (PKDO,i, PKAU) by the 

adversary, algorithm B returns the re-encryption key rkDO→AU = xAU / xi. 
- Share ciphertext generation oracle Osc: With the input of ( ,

w
DO iCT , rkDO→AU) by the 

adversary, algorithm B returns the share ciphertext w
AUCT = (A, B) = ( r

AUPK , H2(e(PKS, 
H1(w))r)). 

- Search token generation oracle Ost: With the input of a keyword w and a public key PKAU 
by the adversary, B randomly chooses and calculates T1 = ′rg and T2 = 1/

1( )′ AUxH w · ( )′r
SH PK . 

B responds A4 with Tw = (T1, T2). 
- Test oracle Ote: With the input of ( w

AUCT , ′wT ) by the adversary, the algorithm B outputs 1 
if the equation B = H2(e(A,τ a ) holds or 0 otherwise.  

Challenge: Once the Phase1 is finish, A4 inputs two distinct keywords (w0, w1) where |w0| 
= |w1| and a public key *

AUPK . B randomly picks c ∈ {0, 1} and sets *
1T = /b lg  and *

2T =
*1/

1( ) AU
x

cH w η⋅ . Ifη =H(gab) then *
cwT is a valid challenge token. If r* = b / l, then *

1T = 
*rg , *

2T

= *1/
1( ) AU

x
cH w η⋅ =

*1/
1( ) AUSK

cH w ﹒ H(gab) = 
*1/

1( ) AUSK
cH w ﹒ H( ( / )al b lg ⋅ ) = 

*1/
1( ) AUSK

cH w
( )′r

SH PK . Finally, it responds with the challenge token *
cwT = ( *

1T , *
2T ). 

Phase 2: A4 issues more queries, but with the restrictions as defined in Game 4. 
Guess: At last, A4 outputs a guess ′c ∈ {0, 1}. If c = ′c , B outputs 1, meaning thatη = 

H(gab)or 0 otherwise. 
Similar to the proof of Theorem 3, it can be deduced that the lower bound on B’s advantage 

is ε. 
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5. Performance Evaluation 
We first compare the properties of the existing KU-PEKS framework [34] and the KU-CS-
PEKS framework. The details are shown in Table 1. From the table, it is easy to see that the 
KU-CS-PEKS framework enjoys some good properties such as supporting privacy-preserving 
ciphertext update on the storage server and transmitting the search tokens without secure 
channel, while providing ciphertext sharing function. 
 

Table 1. Properties of the KU-PEKS framework and the KU-CS-PEKS framework 

Frameworks Supporting 
key update 

Supporting 
privacy-preserving 
ciphertext update 

Supporting 
ciphertext 

sharing 

Considering 
search token 

privacy 

No 
secure 

channel 
KU-PEKS yes no no no no 

KU-CS-PEKS yes yes yes yes yes 
 

Table 2. Computational efficiency of the compared schemes 
Schemes KWCipherGen CiphertextUpdate CiphertextShare SearchTokenGen Test 

KU-
PEKS 

4TE + TH + TMP 
+ TP+ TM 

5TE + TH + TMP + 
TP + TM + TI 

- TMP + TE TH + 
TP 

KU-CS-
PEKS 

TE + TET + TH 
+ TMP + TP TE TE TH + TMP + 3TE 

2TH + 
TP + 
2TE 

 
Table 3. Communicational efficiency of the compared schemes 

Schemes Length of a keyword ciphertext Length of a search token 
KU-PEKS 3|G| + l |G| 

KU-CS-PEKS |G| + l 2|G| 
 

Table 4. Time cost of each basic operation and bit-length of an element/hash value 
Running time (ms) Bit-length (bit) 

TH TP TMP TE TET TM TI |G| l 
0.005 1.6 4.3 0.2 0.008 0 0.002 512 256 
 
Table 2 and Table 3 respectively give the computational efficiency comparison and the 

communicational efficiency comparison of the KU-PEKS scheme [34] and the proposed KU-
CS-PEKS scheme, where TH, TP, TMP, TE, TET, TM and TI are the running time of a cryptographic 
hash operation, a bilinear pairing operation, a map-to-point encoding operation, an exponent 
operation in G, an exponent operation in GT, a modular multiplication operation in Zp and a 
modular inverse operation in Zp respectively, l and |G| respectively denote the bit-size of a 
hash value and the bit-size of an element in G. 

To evaluate the computational efficiency, the schemes are tested by the PBC library [40]. 
The experiments are carried out on a laptop and Linux OS with an Intel Core i5-4210U CPU 
of 1.7GHz and 3.0GB RAM. The bilinear pairing is simulated by the Type-A pairing, which 
is defined on the curve y2 = x3 + x over the finite field Fq for prime q ≡ 3 mod 4.  Besides, the 
hash functions are implemented by SHA-256. Table 4 gives the time cost of each basic 
operation and bit-length of a group element or a hash value.  
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The experimental results (see Fig. 1 ~ Fig. 4) show that the costs of the SearchTokenGen 
algorithm and the Test algorithm in the KU-CS-PEKS scheme are higher than that of the KU-
PEKS scheme, but the costs of the KWCiphertextGen algorithm and the CiphertextUpdate 
algorithm are lower than that of the KU-PEKS scheme. Specifically, the time for encrypting a 
keyword in the KU-CS-PEKS scheme is about 6.113ms, while that in the KU-PEKS scheme 
is about 6.705ms. The time for updating a keyword ciphertext in the KU-CS-PEKS scheme is 
about 0.2ms, while that in the KU-PEKS scheme is about 6.907ms. The time for generating a 
search token in the KU-CS-PEKS scheme is about 4.905ms, while that in the KU-PEKS 
scheme is about 4.5ms. In addition, the time for matching a keyword ciphertext with a search 
token in the KU-CS-PEKS scheme is about 2.01ms, while that in KU-PEKS scheme is about 
1.605ms.  

 

  
Fig. 1. Time cost of keyword ciphertext 

generation algorithm 
 

Fig. 2. Time cost of keyword ciphertext update 
algorithm  

  
Fig. 3. Time cost of search token generation 

algorithm 
Fig. 4. Time cost of test algorithm 
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Regarding the communication overhead (as illustrated in Fig. 5), the keyword ciphertext 

length in KU-CS-PEKS scheme is 768 bits, while the keyword ciphertext length in the KU-
PEKS scheme is 1792 bits. Besides, the size of a search token in KU-CS-PEKS scheme is 
1024 bits, while that in the KU-PEKS scheme is 512 bits. Compared with the KU-PEKS 
scheme, the KU-CS-PEKS scheme has shorter keyword ciphertext and longer search token. 
 

 
Fig. 5. Bit-length of keyword ciphertext and search token 

 
To remove secure channels and achieve search token indistinguishability, the KU-CS-

PEKS scheme has to generate longer search tokens and consumes more time in search token 
generation and match testing. However, the additional costs are worthwhile, because the 
proposed scheme effectively fixes the inherent security weaknesses in the previous KU-PEKS 
scheme. 

 6. Conclusion 
This paper presents a PEKS framework, named key-updatable and ciphertext-sharable 

PEKS (KU-CS-PEKS). After formally defining its security (including the keyword ciphertext 
indistinguishability and the search token indistinguishability), a concrete KU-CS-PEKS 
scheme that is proven secure in the random oracle model is given. The KU-CS-PEKS scheme 
realizes privacy-preserving ciphertext update on the storage server and ciphertext sharing 
functions, while removing the secure channel requirement. The experimental results and 
comparisons demonstrate that the KU-CS-PEKS scheme is feasible and applicable. 
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