
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 1, Jan. 2022 266
Copyright ⓒ 2022 KSII

This work was supported by the National Natural Science Foundation of China [61772009, 61972095, 62072104],
the Natural Science Foundation of Jiangsu Province [BK20181304].

http://doi.org/10.3837/tiis.2022.01.015 ISSN : 1976-7277

Privacy-Preserving Key-Updatable Public
Key Encryption with Keyword Search

Supporting Ciphertext Sharing Function

Fen Wang1, Yang Lu1*, Zhongqi Wang2 and Jinmei Tian1
1 School of Computer and Electronic Information, Nanjing Normal University

Nanjing, Jiangsu 210046 - China
2Graduate School of Science and Technology, University of Tsukuba

Tsukuba, Ibaraki 305-8577 - Japan
[e-mail: shisan_x@163.com, luyangnsd@163.com, zqwang1028@outlook.com, tianjinnmei@163.com]

*Corresponding author: Yang Lu

Received April 6, 2021; revised June 8, 2021; accepted January 4, 2022;
published January 31, 2022

Abstract

Public key encryption with keyword search (PEKS) allows a user to make search on
ciphertexts without disclosing the information of encrypted messages and keywords. In
practice, cryptographic operations often occur on insecure devices or mobile devices. But,
these devices face the risk of being lost or stolen. Therefore, the secret keys stored on these
devices are likely to be exposed. To handle the key exposure problem in PEKS, the notion of
key-updatable PEKS (KU-PEKS) was proposed recently. In KU-PEKS, the users’ keys can be
updated as the system runs. Nevertheless, the existing KU-PEKS framework has some
weaknesses. Firstly, it can’t update the keyword ciphertexts on the storage server without
leaking keyword information. Secondly, it needs to send the search tokens to the storage server
by secure channels. Thirdly, it does not consider the search token security. In this work, a new
PEKS framework named key-updatable and ciphertext-sharable PEKS (KU-CS-PEKS) is
devised. This novel framework effectively overcomes the weaknesses in KU-PEKS and has
the ciphertext sharing function which is not supported by KU-PEKS. The security notions for
KU-CS-PEKS are formally defined and then a concrete KU-CS-PEKS scheme is proposed.
The security proofs demonstrate that the KU-CS-PEKS scheme guarantees both the keyword
ciphertext privacy and the search token privacy. The experimental results and comparisons
bear out that the proposed scheme is practicable.

Keywords: Public key encryption with keyword search, key exposure, key update,
ciphertext sharing.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 1, January 2022 267

1. Introduction

In the wake of the rapid universal application of cloud storage, a growing number of
enterprises and users are choosing to preserve the data in the cloud. The cloud provides users
with more efficient and flexible data services while reducing the cost of data storage.
Nevertheless, the cloud storage servers are untrusted for the data owners. Therefore, the data
owners may choose to encrypt the data and upload the ciphertexts to the cloud storage server.
But as a result, users face the question of how to retrieve the ciphertexts. The user can choose
to download all ciphertexts to the local storage, and retrieve the data plaintexts after decryption.
This method is obviously inefficient. It not only requires high communication and computation
overhead, but also takes up a lot of local storage space. Another method is that the user sends
the storage server the decryption key, then the storage server decrypts the ciphertexts and
searches on the plaintexts, which obviously loses the meaning of encryption.

In order to handle the ciphertext retrieval issue, searchable encryption was proposed [1].
Searchable encryption allows users to retrieve the ciphertexts by keywords without revealing
any information about the plaintexts. It can be implemented over symmetric encryption or
public key encryption. In 2000, Song et al. [1] first brought a symmetric searchable encryption
scheme. Subsequently, many improved symmetric searchable encryption schemes [2-6] were
devised. Although these symmetric searchable encryption schemes have high execution
efficiency, they encounter the difficulty in key distribution. The mechanism of public key
encryption with keyword search (PEKS), invented by Boneh et al. [7], allows a ciphertext
receiver to authorize a storage server to verify whether the ciphertexts sent to them contain
specific keyword(s). In PEKS, a user sends the encrypted data to a storage server. If a recipient
intends to get some data ciphertexts that involve a specific keyword w, it can produce a search
token Tw of the keyword w by its own secret key. Then the recipient sends the storage server
the search token Tw. Once receiving Tw, the storage server can use the search token to match
the ciphertexts without decryption. In the end, the storage server sends the retrieved ciphertexts
to the recipient. After the concept of PEKS was put forward, various PEKS schemes and
variants have been proposed [8-19]. In PEKS, the search tokens need to be conveyed over
secure channels to the storage server. If the search tokens are captured by the attacker, then
the indistinguishability of the keyword ciphertexts will be broken. Nevertheless, it is costly to
establish a secure channel, especially over an open network. In [20], Beak et al. introduced the
framework of secure channel free PEKS (SCF-PEKS) which does not require transmitting the
search tokens through secure channels. In SCF-PEKS, the user needs to use both the public
keys of the recipient and the designated storage server to encrypt the keyword to create the
keyword ciphertext. Thus, only the designated server can execute the search operation by its
secret key. Due to the characteristic of no secure channel, several SCF-PEKS schemes have
also been presented [21-26]. Apart from this, some works [27-33] introduced PEKS into other
public key cryptosystems.

The security of a cryptosystem mainly depends on the confidentiality of secret keys. Once
a secret key is leaked, the security of entire cryptosystem may not be guaranteed. However,
cryptographic computations are often performed on some relatively insecure devices which
cannot guarantee the secrecy of secret keys. Therefore, key disclosure seems to be inevitable.
To overcome the key disclosure issue in PEKS setting, Anada et al. [34] put froward the
concept of key-updatable PEKS (KU-PEKS). They also gave a generic KU-PEKS construction
that combines a PEKS scheme with a public key encryption (PKE) scheme. In KU-PEKS,
each user can update his/her public and secret keys as the system runs. Once re-keying occurs,
the cloud server refreshes the ciphertexts stored on it by the decrypt-then-encrypt operations.

268 Wang et al.: Privacy-Preserving Key-Updatable Public Key Encryption with
Keyword Search Supporting Ciphertext Sharing Function

Up to now, KU-PEKS is the only framework supporting the key update function in PEKS
setting.

1.1 The Motivation and Contributions
Although KU-PEKS realizes the key update function in PEKS, it suffers from three security
weaknesses.

1) KU-PEKS does not provide privacy-preserving ciphertext update function on the storage
server. As we know, it is required that a keyword search encryption scheme should protect the
keyword privacy. However, the KU-PEKS scheme proposed in [34] completely exposes the
keyword information to the storage server when implementing ciphertext update. To update
the ciphertexts, the storage server in KU-PEKS should first decrypt the old ciphertexts to get
the encrypted keywords, and then re-encrypt the keywords using the new public key to produce
the new keyword ciphertexts. Therefore, KU-PEKS fails in protecting the privacy of keywords.

2) KU-PEKS should transmit the search tokens secretly. In order to successfully retrieve
the desired ciphertext, a user in KU-PEKS should send a search token to the storage server.
However, the user should use a secure channel to transmit the search token. If not, the search
token may be intercepted by an adversary and then is used to break the keyword ciphertext
indistinguishability. Therefore, KU-PEKS is not suitable for the scenarios where establishing
a secure channel is difficult or impossible.

3) KU-PEKS did not consider the search token indistinguishability. As Rhee et al. pointed
out in [24], a PEKS scheme should meet the indistinguishability of keyword ciphertext/search
token. If a PEKS scheme does not have the search token indistinguishability, it can’t endure
the keyword guessing attack by the outside attacker (OUT-KGA). In [34], Anada et al.
constructed the KU-PEKS scheme by integrating a PEKS scheme into a PKE scheme.
Unfortunately, the vast majority of PEKS schemes were not proven to be search token
indistinguishable. Therefore, the KU-PEKS scheme proposed in [34] is fragile to the OUT-
KGA.

In this work, a privacy-preserving key-updatable public key searchable encryption scheme
is devised. The presented scheme surmounts the weaknesses in the existing KU-PEKS
framework and supports the ciphertext sharing function that is not considered in Anada et al.’s
KU-PEKS scheme. Specifically, the contributions are as below:

1) A new PEKS framework called key-updatable and ciphertext-sharable PEKS (KU-CS-
PEKS) is proposed. Compared with KU-PEKS, the proposed framework enjoys the following
three merits. Firstly, KU-CS-PEKS provides privacy-preserving ciphertext update function on
the storage server. To update the ciphertexts without decryption, proxy re-encryption [36–37]
is incorporated into the framework. Since the storage server is absolutely ignorant of the
keywords encrypted in the keyword ciphertexts during ciphertext updating, KU-CS-PEKS
effectively protects the privacy of the keywords. Secondly, KU-CS-PEKS removes the
requirement of secure channel in search token transmission. KU-CS-PEKS employs a
designated storage server to perform the match-testing operation by its secret key. Since the
outside attacker cannot run the testing operation, it cannot break the indistinguishability of
keyword ciphertext even if it intercepts the corresponding search token. Therefore, a public
channel can be used to transmit the search tokens. Thirdly, KU-CS-PEKS offers the ciphertext
sharing function. In KU-PEKS, only the data owner can access the ciphertexts. However, in
practice, the data owner often needs to share his/her ciphertexts to other users. In KU-CS-
PEKS, by authorizing the storage server to act as a re-encryption proxy, the data owner can
share his/her ciphertexts with others. In this way, the authorized users also can access and
retrieve the re-encrypted ciphertexts on the storage server. After giving the framework of KU-

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 1, January 2022 269

CS-PEKS, the security model of KU-CS-PEKS is formalized, which captures both the
indistinguishability of keyword ciphertext and search token.

2) A concrete KU-CS-PEKS scheme is developed. The security proofs show that: i) under
the hardness assumption of the bilinear Diffie-Hellman inversion (BDHI) problem [38], it
satisfies the original ciphertext indistinguishability and the re-encryption ciphertext
indistinguishability; ii) under the hardness assumption of the hash Diffie-Hellman (HDH)
problem [39], it satisfies the data owner’s search token indistinguishability and the authorized
user’s search token indistinguishability. In addition, the KU-CS-PEKS scheme is compared
with the existing KU-PEKS scheme to show its merits and applicability.

2. Preliminaries
In this section, some preliminaries that used in the paper are reviewed.

Assuming that G and GT denote two multiplicative cyclic groups both with a prime order
p, g denotes a random generator of G, and e: G × G → GT is a bilinear map satisfying the
following characteristics:

(1) Bilinearity: ∀m, n ∈ G and x, y ∈ *
pZ , e(mx, ny) = e(m, n)xy.

(2) Non-degeneracy: ∃m, n ∈ G, e(m, n) ≠ 1.
(3) Computability: ∀m, n ∈ G, e(m, n) can be calculated by an efficient algorithm.
Definition 1. The BDHI problem is: Inputting two elements (g, gα), to calculate e(g, g)1/α,

where α ∈ Zq.
Definition 2. The HDH problem is: Inputting four elements (g, gα, gβ, H(gγ)) ∈ G × G × G

× {0, 1}hlen and a hash function H: G → {0, 1}hlen, to output “1” if αβ = γ or “0” otherwise,
where α, β, γ ∈ *

pZ and hlen ∈ Z+.

3. Framework and security model of KU-CS-PEKS

3.1 Framework definition
A KU-CS-PEKS scheme includes four entities: a global parameter generator (GPG), a
designated storage server, a data owner and an authorized user. The GPG is responsible for
producing the global parameters for the whole system. The data owner produces the keyword
ciphertext as well as the data ciphertext, then transmits the keyword ciphertext and the data
ciphertext to the designated storage server. The data owner also generates both the update key
and the re-encryption key which are transmit to the designated storage server. When receiving
an update key or a re-encryption key, the designated storage server can update or re-encrypt
the ciphertexts. When the designated storage server gets a search token from the data owner
or the authorized user, it seeks out and returns all matching data ciphertexts.

Definition 3. A KU-CS-PEKS scheme is specified by ten algorithms that are shown below:
(1) GlobalSetup(λ): Given as input a security parameter λ, the GPG executes the algorithm

and outputs a set of global parameters gp.
(2) KeyGenserver(gp): Given gp, the designated storage server executes this algorithm to

produce a pair of public/secret keys (PKS, SKS).
(3) KeyGenuser(gp): Given gp, the user (either a data owner or an authorized user) executes

the algorithm to produce a pair of public/secret keys (PKU, SKU). In the following paper, the
public/secret key pairs of a data owner in two different time periods i and j are denoted by

270 Wang et al.: Privacy-Preserving Key-Updatable Public Key Encryption with
Keyword Search Supporting Ciphertext Sharing Function

(PKDO,i, SKDO,i) and (PKDO,j, SKDO,j) respectively, the public/secret key pair of an authorized
user is (PKAU, SKAU) .

(4) KWCiphertextGen(gp, w, PKS, PKDO,i): Given gp, a keyword w, the designated storage
server’s public key PKS and the data owner’s public key PKDO,i, the data owner executes this
algorithm to produce a keyword ciphertext ,

w
DO iCT which is valid only in the time period i.

(5) UpdateKeyGen(gp, SKDO,i, SKDO,j): Given gp, two secret keys SKDO,i and SKDO,j in two
different time periods i and j, the data owner executes this algorithm to produce an update key
uki→j. The update key uki→j is then sent to the designated storage server.

(6) CiphertextUpdate(gp, uki→j, ,
w

DO iCT): Given gp, an update key uki→j and a keyword
ciphertext ,

w
DO iCT in the time period i, the designated storage server executes this algorithm to

produce an update ciphertext w
jDOCT , for the time period j.

(7) ReKeyGen(gp, SKDO,j, SKAU): Given gp, the data owner’s secret key SKDO,j and the
authorized user’s secret key SKAU, the data owner and the authorized user executes this
algorithm to produce a re-encryption key rkDO→AU in an interactive manner.

(8) CiphertextShare(gp, w
jDOCT , , rkDO→AU): Given gp, a keyword ciphertext w

jDOCT , and a re-
encryption key rkDO→AU, the designated storage server executes this algorithm to produce a
shared keyword ciphertext w

AUCT . Note that the keyword ciphertext w
AUCT is encrypted under

the authorized user’s public key PKAU and the designated storage server’s public key PKS.
(9) SearchTokenGen(gp, w′ , PKS, SKU): Given gp, a keyword w′ , the designated storage

server’s public key PKS and a secret key SKU, the data owner or the authorized user executes
the algorithm to produce a search token wT ′ , where SKU is either SKDO,j or SKAU.

(10) Test(gp, CTw, wT ′ , SKS): Given gp, a keyword ciphertext CTw, a search token wT ′ and
the designated storage server’s secret key SKS, the designated storage server executes this
algorithm to output 1 if CTw matches wT ′ (i.e., w = w′) or 0 else, where CTw is either w

jDOCT , or
w
AUCT .
If the following formulas are satisfied for any keyword w, then a KU-CS-PEKS scheme is

correct.
(1) If gp ← GlobalSetup(λ), (PKS, SKS) ← KeyGenserver(gp), (PKDO,i, SKDO,i) ←

KeyGenuser(gp), (PKDO,j, SKDO,j) ← KeyGenuser(gp), ,
w

DO iCT ← KWCiphertextGen(gp, w, PKS,
PKDO,i), uki→j ← UpdateKeyGen(gp, SKDO,i, SKDO,j), w

jDOCT , ← CiphertextUpdate(gp, uki→j,

,
w

DO iCT), rkDO→AU ← ReKeyGen(gp, SKDO,j, SKAU), w
AUCT ← CiphertextShare(gp, w

jDOCT , ,

rkDO→AU),Tw ← SearchTokenGen(gp, w, PKS, SKDO,j), then 1 ← Test(gp, w
jDOCT , , Tw, SKS);

(2) If gp ← GlobalSetup(λ), (PKS, SKS) ← KeyGenserver(gp), (PKDO,i, SKDO,i) ←
KeyGenuser(gp), (PKDO,j, SKDO,j) ← KeyGenuser(gp), (PKAU, SKAU) ← KeyGenuser(gp), ,

w
DO iCT ←

KWCiphertextGen(gp, w, PKS, PKDO,i), uki→j ← UpdateKeyGen(gp, SKDO,i, SKDO,j), w
jDOCT , ←

CiphertextUpdate(gp, uki→j, ,
w

DO iCT), rkDO→AU ← ReKeyGen(gp, SKDO,j, SKAU), w
AUCT ←

CiphertextShare(gp, w
jDOCT , , rkDO→AU), Tw ← SearchTokenGen(gp, w, PKS, SKAU), then 1 ←

Test(gp, w
AUCT , Tw, SKS).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 1, January 2022 271

3.2 Security definitions
A KU-CS-PEKS scheme should meet the indistinguishability of keyword ciphertext/search
token. To formalize the security definitions of KU-CS-PEKS, four adversarial games (Game
1 ~ Game 4) between an adversary Ai (i = 1, 2, 3, 4) and a challenger B are defined, where the
adversary Ai is either a malicious designated storage server or an outsider attacker. Game 1
defines the original keyword ciphertext indistinguishability under the adaptively chosen
keyword attack (OKC-IND-CKA). Game 2 defines the re-encryption keyword ciphertext
indistinguishability under the adaptively chosen keyword attack (RKC-IND-CKA). Game 3
defines the data owner’s search token indistinguishability under the adaptively chosen
keyword attack (DOST-IND-CKA). Game 4 defines the authorized user’s search token
indistinguishability under the adaptively chosen keyword attack (AUST-IND-CKA).

Game 1 (OKC-IND-CKA): In this game, B plays with A1 who models a designated storage
server or an outsider attacker as below:

Setup: B generates gp and (PKS, SKS) by running GlobalSetup(λ) and KeyGenserver(gp).
Then, B gives A1 {gp, PKS} if it is an outside attacker or {gp, PKS, SKS} if it is a designated
storage server.

Phase 1: A1 is capable of making six oracle queries adaptively.
- Uncorrupted key generation oracle Opk: With the input of a time period index i by the

adversary, the challenger runs KeyGenuser(gp) to produce a key pair (PKDO,i, SKDO,i) of the data
owner and then gives PKDO,i to A1.

- Corrupted key generation oracle Osk: With the input of a time period index j by the
adversary, the challenger runs KeyGenuser(gp) to produce a key pair (PKDO,j, SKDO,j) of the data
owner and then gives (PKDO,j, SKDO,j) to A1. Here, it is restricted that A1 is disallowed to submit
a same time period index to both Opk and Osk.

- Update key generation oracle Ouk: With the input of two distinct time period indices (k, l)
by the adversary, the challenger runs UpdateKeyGen(gp, SKDO,k, SKDO,l) to produce an update
key ukk→l and then returns it to A1. As in [35], it is not allowed the update key queries to occur
on a corrupted time period and an uncorrupted time period.

- Update ciphertext generation oracle Ouc: With the input of two distinct time period indices
(k, l) and an keyword ciphertext ,

w
DO kCT by the adversary where either both k and l are corrupted

or both are uncorrupted, the challenger runs CiphertextUpdate(gp, ukk→l, ,
w

DO kCT) to produce
an update ciphertext ,

w
DO lCT and then returns it to A1.

- Search token generation oracle Ost: With the input of a time period index i and a keyword
w by the adversary, the challenger runs SearchTokenGen(gp, w, PKS, SKDO,i) to produce a
search token Tw and outputs to A1.

- Test oracle Ote: With the input of (,
w

DO iCT , ′wT) by the adversary, the challenger runs
Test(gp, ,

w
DO iCT , ′wT , SKS,) and then returns the result to A1. This oracle only allows the outside

attacker to make queries.
Challenge: Once the Phase 1 is finished, A1 inputs two distinct keywords (w0, w1) where

|w0| = | w1| and a time period index i* to B. The restrictions are (1) A1 has never submitted the
query Osk(i*); (2) A1 has never submitted the queries Ost(i*, w0) and Ost(i*, w1) if it is the
designated data storage server; (3) For any time period j, A1 has never submitted the queries
Ouk(i*, j) and Ost(j, w0) or the queries Ouk(i*, j) and Ost(j, w1) if it is the designated data storage
server. The challenger B randomly picks b ∈ {0, 1}, calculates the ciphertext *,

bw
DO i

CT =

KWCiphertextGen(gp, wb, *,DO i
PK , PKS) and sends it to A1.

272 Wang et al.: Privacy-Preserving Key-Updatable Public Key Encryption with
Keyword Search Supporting Ciphertext Sharing Function

Phase 2: A1 makes more oracle queries, but with the following constraints: (1) A1 is
disallowed to ask Osk(i*); (2) A1 is disallowed to ask Ote(*,

bw
DO i

CT , *
1T) if it is the outside attacker,

where *
1T is the result of the query Ost(i*, w0) or Ost(i*, w1); (3) For any time period j, A1 is

disallowed to ask Ote(Ouc(i*, j, *,
bw

DO i
CT), *

2T) if it is the outside attacker, where *
2T is the result

of the query Ost(j, w0) or Ost(j, w1); (4) A1 is disallowed to ask Ost(i*, wb) if it is the designated
data storage server; (5) For any time period j, A1 is disallowed to ask both Ouk(i*, j) and Ost(j,
w0) or both Ouk(i*, j) and Ost(j, w1) if it is the designated data storage server; (6) For any time
period j, A1 is disallowed to ask both Ouc(i*, j, *,

bw
DO i

CT) and Ost(j, w0) or both Ouc(i*, j, *,
bw

DO i
CT)

and Ost(j, w1) if A1 is the designated data storage server.
Guess: At last, A1 outputs a guess b′ and wins if b b′= . Its advantage is defined as

1
() | Pr[] 1 / 2 |λ− − ′= = −OKC IND CKA

AAdv b b .

Definition 4. For a KU-CS-PEKS scheme, if the advantage
1

− −OKC IND CKA
AAdv of any

polynomial time adversary A1 is negligible, then the scheme is OKC-IND-CKA secure.
Game 2 (RKC-IND-CKA): In this game, B plays with A2 who models a designated storage

server or an outsider attacker as below:
Setup: B generates gp, (PKS, SKS) and (PKDO,i, SKDO,i) by running GlobalSetup(λ),

KeyGenserver(gp) and KeyGenuser(gp) respectively. Then, B gives A2 {gp, PKS, PKDO,i} if it is an
outside attacker or {gp, PKS, SKS, PKDO,i} if it is a designated storage server.

Phase 1: A2 is capable of making six oracle queries adaptively.
- Uncorrupted key generation oracle Opk: When A2 queries this oracle, the challenger runs

KeyGenuser(gp) to produce an authorized user’s public/secret key pair (PKAU, SKAU) and gives
PKAU to A2.

- Corrupted key generation oracle Osk: When A2 queries this oracle, the challenger runs
KeyGenuser(gp) to produce an authorized user’s public/secret key pair (PKAU, SKAU) and gives
(PKAU, SKAU) to A2.

- Re-encryption key generation oracle Ork: With the input of (PKDO,i, PKAU) by the
adversary, the challenger runs ReKeyGen(gp, SKDO,i, SKAU) to produce a re-encryption key
rkDO→AU and then returns it to A2.

- Share ciphertext generation oracle Osc: With the input of (,
w

DO iCT , rkDO→AU) by the
adversary, the challenger runs CiphertextShare(gp, ,

w
DO iCT , rkDO→AU) to produce a share

ciphertext w
AUCT and then returns it to A2.

- Search token generation oracle Ost: With the input of (PKAU, w) by the adversary, the
challenger runs SearchTokenGen(gp, w, PKS, SKAU) to produce a search token Tw and then
returns it to A2.

-Test oracle Ote: With the input of (w
AUCT , Tw) by the adversary, the challenger runs Test(gp,

w
AUCT , Tw, SKS) and returns the result to A2.
Challenge: Once the Phase1 is finished, A2 inputs two distinct keywords (w0, w1) where

|w0| = |w1| and a public key *
AUPK . The restrictions are (1) *

AUPK is from Opk; (2) A2 has never
submitted the queries Ost(*

AUPK , w0) and Ost(*
AUPK , w1). B randomly picks b ∈ {0, 1},

calculates the ciphertext C* = KWCiphertextGen(gp, wb, PKS, *
AUPK) and sends it to A2.

Phase 2: A2 makes more oracle queries. The only restriction is that A2 has never submitted
the queries Ost(*

AUPK , w0) and Ost(*
AUPK , w1).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 1, January 2022 273

Guess: At last, A2 outputs a guess ′b and wins if b = b′ . A2’s advantage is defined to be

2
() | Pr[] 1 / 2 |λ− − ′= = −RKC IND CKA

AAdv b b .

Definition 5. For a KU-CS-PEKS scheme, if the advantage
2

− −RKC IND CKA
AAdv of any

polynomial time adversary A2 is negligible, then the scheme is RKC-IND-CKA secure.
Game 3 (DOST-IND-CKA): In this game, B plays with A3 who models an outside attacker

as below:
Setup: B generates gp and (PKS, SKS) by running GlobalSetup(λ) and KeyGenserver(gp)

respectively. Then, B gives A3{gp, PKS}.
Phase 1: A3 is capable of make queries to Opk, Osk, Ouk, Ouc, Ost and Ote adaptively. These

queries are answered as in OKC-IND-CKA-Game.
Challenge: Once the Phase1 is finished, A3 inputs two distinct keywords (w0, w1) where

|w0| = |w1| and a time period index i* to B. The restrictions are (1) A3 has never submitted the
query Osk(i*); (2) For any time period j, A3 has never submitted the queries Ouk(j, i*); (3) For
any time period j, A3 has never submitted the queries Ouc(j, i*, 0

,
w

DO jCT) and Ouc(j, i*, 1
,

w
DO jCT). B

randomly selects b ∈ {0, 1}, calculates a search token
bwT = SearchTokenGen(gp, wb, PKS,

*,DO i
SK) and sends it to A3.

Phase 2: A3 makes more oracle queries, but with the constraints: (1) A3 is disallowed to ask
Osk(i*); (2) For any time period j, A3 is disallowed to ask Ouk(j, i*); (3) For any time period j,
A3 is disallowed to ask Ouc(j, i*, 0

,
w

DO jCT) and Ouc(j, i*, 1
,

w
DO jCT).

Guess: At last, A3 outputs a guess b′ and wins if b = b′ . Its advantage is defined to be

3
() | Pr[] 1 / 2 |λ− − ′= = −DOST IND CKA

AAdv b b .

Definition 6. For a KU-CS-PEKS scheme, if the advantage
3

− −DOST IND CKA
AAdv of any

polynomial time adversary A3 is negligible, then the scheme is DOST-IND-CKA secure.
Game 4 (AUST-IND-CKA): In this game, B plays with A4 who models an outside attacker

as below:
Setup: B generates gp, (PKS, SKS) and (PKDO,i, SKDO,i) by running GlobalSetup(λ) ,

KeyGenserver(gp) and KeyGenuser(gp) respectively. Then, B gives A4 {gp, PKS, PKDO,i}.
Phase 1: A4 is capable of make queries to Opk, Osk, Ork, Osc, Ost and Ote adaptively. These

queries are answered as in RKC-IND-CKA-Game.
Challenge: Once the Phase1 is finished, A4 inputs two distinct keywords (w0, w1) where

|w0| = |w1| and a public key *
AUPK . The restrictions are that: (1) *

AUPK is from Opk; (2) A4 has
never submitted the queries Ork(PKDO,i, *

AUPK); (3) A4 has never submitted the queries
Osc(0

,
w

DO iCT , *→DO AU
rk) and Osc(1

,
w

DO iCT , *→DO AU
rk). B randomly selects b ∈ {0, 1}, calculates a

search token
bwT = SearchTokenGen(gp, wb, PKS, *

AUSK) and sends it to A4.
Phase 2: A4 makes more oracle queries, but with the constraints: (1) A4 has never submitted

the queries Ork(PKDO,i, *
AUPK); (2) A4 has never submitted the queries Osc(0

,
w

DO iCT , *→DO AU
rk)

and Osc(1
,

w
DO iCT , *→DO AU

rk).
Guess: At last, A4 outputs a guess b′ and wins if b = b′ . Its advantage is defined as

4
() | Pr[] 1 / 2 |λ− − ′= = −AUST IND CKA

AAdv b b .

Definition 7. For a KU-CS-PEKS scheme, if the advantage
4

− −AUST IND CKA
AAdv of any

polynomial time adversary A4 is negligible, then the scheme is AUST-IND-CKA secure.

274 Wang et al.: Privacy-Preserving Key-Updatable Public Key Encryption with
Keyword Search Supporting Ciphertext Sharing Function

4. The proposed KU-CS-PEKS scheme

4.1 Description of the proposed scheme
The proposed KU-CS-PEKS scheme is as below:

(1) GlobalSetup(λ): Inputting λ, the algorithm generates two cyclic groups (G, GT) with
order p and a bilinear pairing e: G × G → GT. Additionally, it selects a generator g ∈ G and
three cryptographic hash functions H: G →{0, 1}hlen, H1: {0, 1}* → G and H2: GT → {0, 1}hlen.
Finally, it sets gp = {p, g, G, GT, e, H, H1, H2}.

(2) KeyGenserver(gp): Inputting gp, this algorithm picks a ∈ *
pZ at random, sets SKS = a, and

calculates PKS = ga. It then outputs (PKS, SKS).
(3) KeyGenuser(gp): Inputting gp, the algorithm picks xU ∈ *

pZ at random, sets SKU = xU and

PKU = Uxg . It then outputs (PKU, SKU). In the following algorithms, the data owner’s key pairs
in different time periods i and j are denoted by (PKDO,i, SKDO,i) and (PKDO,j, SKDO,j) respectively,
and the authorized user’s key pair is denoted by (PKAU, SKAU).

(4) KWCiphertextGen(gp, w, PKS, PKDO,i): Inputting gp, w, PKS and PKDO,i, this algorithm
randomly picks r ∈ *

pZ , calculates A = ,
r
DO iPK and B = H2(t), where t = e(PKS, H1(w))r. It then

outputs ,
w

DO iCT = (A, B).
(5) UpdateKeyGen(gp, SKDO,i, SKDO,j): Inputting gp, SKDO,i and SKDO,j, the data owner

calculates a update key uki→j = SKDO,j / SKDO,i mod p.
(6) CiphertextUpdate(gp, uki→j, ,

w
DO iCT): Inputting gp, an update key uki→j and a keyword

ciphertext ,
w

DO iCT = (A, B) of the time period i. The algorithm calculates ′A = i jukA → = ,DO jSK rg ⋅ =

,
r
DO jPK and creates a new keyword ciphertext w

jDOCT , = (′A , B) for the time period j.
(7) ReKeyGen(gp, SKDO,j, SKAU): Inputting gp, SKDO,j and SKAU, this algorithm generates a

re-encryption key rkDO→AU = SKAU / SKDO,j mod p as below: The data owner picks n ∈ *
pZ at

random and sends (nSKDO,j mod p) to the authorized user; The authorized user calculates and
sends SKAU / nSKDO,j mod p to the data owner; Finally, the data owner uses can calculate
rkDO→AU = SKAU / SKDO,j mod p.

(8) CiphertextShare(gp, w
jDOCT , , rkDO→AU): Inputting gp, w

jDOCT , and rkDO→AU, the algorithm

calculates ′′A = DO AUrkA → = AUSKg = r
AUPK and creates a shared keyword ciphertext w

AUCT = (′′A , B)
for the authorized user.

(9) SearchTokenGen(gp, ′w , PKS, SKU): Inputting gp, ′w , PKS and SKU, the algorithm picks

′r ∈ *
pZ at random, calculates T1 = ′rg and T2 =

1

1()′ USKH w · ()′r
SH PK . It then outputs ′wT = (T1,

T2).
(10) Test(gp, CTw, Tw, SKS): Inputting gp, CTw, ′wT and SKS = a,, this algorithm first

computes 2 1/ ()τ = aT H T and then tests if B= H2(e(A,τ a)). If yes, it returns 1, else, it returns
0.

Correctness: Assume the ciphertext of keyword w is CTw = (r
UPK , H2(e(ga, H1(w))r)) and

the search token associated to keyword ′w is 'wT = ('rg ,
1

1()′ USKH w · ()′r
SH PK). If w = ′w , then

B = H2(e(ga, H1(w))r) =
1

2 1((,(())))′ ′′x r axH e g H w = 2 2 1((,(/ ())))r a a
UH e PK T H T = H2(e(A,τ a)).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 1, January 2022 275

Therefore, the KU-CS-PEKS scheme is correct.

4.2 Security proofs
Theorem 1. The KU-CS-PEKS scheme satisfies the OKC-IND-CKA security under the

hardness assumption of the 1-BDHI problem in the random oracle model.
Proof: Presuming that an adversary A1 can break the OKC-IND-CKA security of the KU-

CS-PEKS scheme with an advantage ε. Then an algorithm B can be created to solve the 1-
BDHI problem with advantage

2
/ε ε′ = st Heq q , where

2Hq and qst respectively represent the

largest number of A1’s queries to the oracles
2HO and Ost, and e denotes the base of the natural

logarithm. Given an instance {p, g, G, GT, e, u1 = gy} of the 1-BDHI problem, B’s goal is to
calculate 1/(,) ye g g ∈ G.

B plays with A1 as below:
Setup: B picks a ∈ *

pZ at ransom, sets PKS = ga and SKS = a. Then, B gives gp = {p, g, G,
GT, e, H, H1, H2} and PKS to A1 if it is an outside attacker or gp = {p, g, G, GT, e, H, H1, H2}
and (PKS, SKS) if it is a designated data storage server, where H, H1 and H2 are three random
oracles.

Phase 1: A1 is capable of make these queries:
- Random oracle HO : B holds a list H-list that is made up of the tuples <M, N>. When

getting a query H(M) from A1, B outputs N if <M, N> is already in H-list. Otherwise, B
randomly picks N ∈ {0, 1}hlen and sets H(M) = N. Finally, B records a new tuple <M, N> onto
H-list and responds with N.

- Random oracle
1HO : B holds a list H1-list that is made up of tuples <w, h, e, cion>. When

getting a query H1(w) from A1, B outputs h if <w, h, e, cion> is already in the H1-list. Else, B
randomly picks cion ∈ {0, 1} such that Pr[cion = 0] =1 / (qst + 1). Then, B randomly picks e
∈ *

pZ and calculates h = eg ∈ G if cion = 0 or h = 1()eu = yeg ∈ G otherwise. Finally, B records
a new tuple <w, h, e, cion> onto H1-list and responds with H1(w) = h.

- Random oracle
2HO : B holds a list H2-list that is made up of the tuples <t, V>. When

getting a query H2(t) from A1, B outputs V if <t, V> is already in H2-list. Otherwise, B randomly
selects V ∈ {0, 1}hlen and sets H2(t) = V. Finally, B records a new tuple <t, V> onto H2-list and
returns V.

- Uncorrupted key generation oracle Opk: B holds a list LU that is made up of the tuples <i,
PKDO,i, xi>. When A1 inputs a time period index i, B responds as below:

B responds with PKDO,i, if i is already in the LU with a tuple <i, PKDO,i, xi>.
Else, B randomly selects xi ∈ *

pZ and sets PKDO,i = ixg . Then B records the tuple <i, PKDO,i,
xi> onto LU and returns PKDO,i.

- Corrupted key generation oracle Osk: B holds a list LC that is made up of tuples <j, PKDO,j,
xj>. When A1 inputs a time period index j and j ≠ i, algorithm B responds as below:

If j is already in the LC with a tuple <j, PKDO,j, xj>, then B answers with (PKDO,j, SKDO,j =
xj).

Otherwise, B chooses xj ∈ *
pZ at random and sets PKDO,j = jxg . Then B records the tuple <j,

PKDO,j, xj> onto LC and returns (PKDO,j , SKDO,j = xj).
- Update key generation oracle Ouk: With the input of two distinct time period indices (k, l)

by the adversary. It is required that both PKDO,k and PKDO,l appear on the LU or LC, B responds

276 Wang et al.: Privacy-Preserving Key-Updatable Public Key Encryption with
Keyword Search Supporting Ciphertext Sharing Function

A1 with ukk→l = xl /xk.
- Update ciphertext generation oracle Ouc: With the input of two distinct time period indices

(k, l) and a keyword ciphertext ,
w

DO kCT by the adversary, PKDO,k and PKDO,l both appear on the
LU or LC. B obtains the update key ukk→l = xl /xk from Ouk and returns the update ciphertext

,
w

DO lCT = (A, B) = (,
r
DO lPK , H2(e(PKS, H1(w))r)).

- Search token generation oracle Ost: With the input of a time period index i and a keyword
w by the adversary, algorithm B responds as follows:

B gets from
1HO a tuple <w, h, e, cion> from

1HO . If cion = 0, B ends the game.

Else, B selects ′r ∈ *
pZ , ′y ∈ *

pZ at random, sets T1 = ′rg and T2 = 1/
1() ′⋅e y yu · ()′r

SH PK =
/ ()′ ′⋅⋅e y a rg H g . Because PKU = 1() ′yu = ixg and 1/

1() ixH w =
1/() ′⋅ ⋅y e y yg = / ′e yg , Tw = (T1, T2) is a

valid search token for w. B responds A1 with Tw = (T1, T2).
-Test oracle Ote: With the input of (,

w
DO lCT , ′wT) by the adversary, the algorithm B outputs

1 if B = H2(e(A,τ a) holds or 0 otherwise.
Challenge: Once the Phase1 is finish, A1 inputs two distinct keywords (w0, w1) where |w0|

= |w1| and a time period index i* to B. B asks
1HO to obtain hb ∈ G such that H1(wb) = hb, where

b ∈ {0, 1}. Let <wb, hb, eb, coinb> be the response tuple. If both coin0 = 1 and coin1 = 1, B ends
the game. Else, B randomly picks ′k ∈ *

pZ and lets r = /′ ⋅k a y∈ *
pZ , and calculates A* = , *

r
DO iPK

= ()′⋅y y rg = /()′ ′⋅ ⋅y y k a yg = /′ ′⋅y k ag ; chooses Z ∈{0, 1}hlen at random and sets B* = Z. Finally, it
transmits the challenge ciphertext C* = (A*, B*) to A1.

Phase 2: A1 makes more oracle queries, but with the constraints as defined in Game 1.
Guess: At last, A1 outputs its guess ′b . Clearly, A1 may have issued a query

2 1 2((, ())) ((,))
′
⋅= b

k
er a a x

S bH e PK H w H e g g . Therefore, it is possible that there exists one pair of

the form 2 1((,) , ((, ())))
′⋅be k

a rx
S be g g H e PK H w in H2-list. B picks a tuple <t, V> at random from

H2-list and outputs 1/ ′⋅be kt as its solution to the given 1-BDHI problem.
In order to analyze the advantage of B in solving the given 1-BDHI problem, three events

are defined:
1δ : B does not terminate for A1’s search token query;

2δ : B does not terminate during Challenge Phase;

3δ : A1 does not issue a query for either 2 1 0((, ()))r
SH e PK H w or 2 1 1((, ()))r

SH e PK H w .
Clearly, 1Pr[] 1 1 / (1)δ = − +stq , since A1 makes at most qst search token queries, the

probability that B does not abort as result of all search token queries is at least
(1 1 / (1)) 1 /− + ≥stq

stq e .
In the challenge phase, Pr[0] 1 / (1)= = +b stc q where b ∈ {0, 1}. Therefore,

2
0 1Pr[1] (1 1 / (1)) 1 1 /= = = − + ≤ −st stc c q q . Thus, the probability of event 2δ is at least 1 / stq .

Assuming that A1 does not query either 2 1 0((, ()))r
SH e PK H w or 2 1 1((, ()))r

SH e PK H w , then

3Pr[|] 1 / 2δ′= ¬ =b b . According to the total probability formula:

3 3 3 3Pr[] Pr[|]Pr[] Pr[|]Pr[]δ δ δ δ′ ′ ′= = = + = ¬ ¬b b b b b b
3 3 3Pr[|]Pr[] Pr[]δ δ δ′≤ = + ¬b b

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 1, January 2022 277

3
1 1 Pr[]
2 2

δ= + ¬ .

Therefore, 3
1 1| Pr[] | Pr[]
2 2

b bε δ′≤ = − ≤ ¬ . Consequently, 3Pr[] 2δ ε¬ ≥

Since the probability that B chooses the right tuple from H2-list is at least
2

1 / Hq , B’s success
probability is at least

2
/ ()ε st Heq q .

Theorem 2. The KU-CS-PEKS scheme satisfies the RKC-IND-CKA security under the
hardness assumption of the 1-BDHI problem in the random oracle model.

Proof: Presuming that an adversary A2 can break the OKC-IND-CKA security of the KU-
CS-PEKS scheme with an advantage ε. Then an algorithm B can be created to solve the 1-
BDHI problem with advantage

2
/ε ε′ = st Heq q , where

2Hq and qst respectively denote the

largest number of A2’s queries to the oracles
2HO and Ost, and e is the base of the natural

logarithm. Given an instance {p, g, G, GT, e, u1 = gy} of the 1-BDHI problem, B’s goal is to
calculate 1/(,) ye g g ∈ G.

B plays with A2 as below:
Setup: B picks a ∈ *

pZ at random, sets PKS = ga and SKS = a. Then, B gives gp = {p, g, G,
GT, e, H, H1, H2} and PKS to A2 if it is an outside attacker or or gp = {p, g, G, GT, e, H, H1, H2}
and (PKS, SKS) if it is a designated data storage server, where H, H1 and H2 are three random
oracles.

Phase 1: A2 is capable of make these queries:
- Random oracle HO : B holds a list H-list that is made up of the tuples <M, N>. When

getting a query H(M) from A2, B outputs N if <M, N> is already in H-list. Otherwise, B
randomly picks N ∈ {0, 1}hlen and sets H(M) = N. Finally, B records a new tuple <M, N> onto
H-list and responds with N.

- Random oracle
1HO : B holds a list H1-list that is made up of tuples <w, h, e, cion>. When

getting a query H1(w) from A2, B outputs h if <w, h, e, cion> is already in H1-list. Else, B
randomly picks cion ∈ {0, 1} such that Pr[cion = 0] =1 / (qst + 1). Then, B randomly picks e
and calculates h = eg ∈ G if cion = 0 or h = 1()eu = yeg ∈ G otherwise. Finally, B records a new
tuple <w, h, e, cion> onto H1-list and responds with H1(w) = h.

- Random oracle
2HO : B holds a list H2-list that is made up of the tuples <t, V>. When

getting a query H2(t) from A2, B outputs V if <t, V> is already in H2-list. Otherwise, B randomly
selects V ∈ {0, 1}hlen and sets H2(t) = V. Finally, B records a new tuple <t, V> onto H2-list and
returns V.

- Uncorrupted key generation oracle Opk: B holds a list LU that is made up of the tuples
<PKAU, xAU>. When A2 queries this oracle, B selects xAU ∈ *

pZ at random and sets PKAU = AUxg .
B records the tuple <PKAU, xAU> onto LU and returns PKAU.

- Corrupted key generation oracle Osk: B holds a list LC that is made up of the tuples <PKAU,
xAU>. When A2 queries this oracle, B selects xAU ∈ *

pZ at random and sets PKAU = AUxg . B records

the tuple <PKAU, xAU> onto LC and returns (PKAU = AUxg , SKAU = xAU).
- Re-encryption key generation oracle Ork: With the input of (PKDO,i, PKAU) by the

adversary, B returns the re-encryption key rkDO→AU = xAU / xi.

278 Wang et al.: Privacy-Preserving Key-Updatable Public Key Encryption with
Keyword Search Supporting Ciphertext Sharing Function

- Share ciphertext generation oracle Osc: With the input of (,
w

DO iCT , rkDO→AU) by the

adversary, B returns the share ciphertext w
AUCT = (A, B) = (r

AUPK , H2(e(PKS, H1(w))r)).
- Search token generation oracle Ost: With the input of (w, PKAU) by the adversary, B

responds as below:
B gets from

1HO a tuple <w, h, e, cion> from
1HO . If cion = 0, B ends the game.

Else, h = 1()eu . B selects ′r ∈ *
pZ , ′y ∈ *

pZ at random, sets T1 = ′rg and T2 = 1/
1() ′⋅y yu ·

()′r
SH PK = / ()′ ′⋅⋅e y a rg H g . Because PKU = 1() ′yu = ixg and 1/

1() ixH w = 1/() ′⋅ ⋅y e y yg = / ′e yg , Tw = (T1,
T2) is a valid search token for w. B responds A2 with Tw = (T1, T2).

-Test oracle Ote: With the input of (,
w

DO lCT , ′wT) by the adversary, B outputs 1 if B = H2(e(A,
τ a) holds or 0 otherwise.

Challenge: Once the Phase1 is finished, A2 inputs two distinct keywords (w0, w1) where
|w0| = |w1| and a time period index i* to B. B asks

1HO to obtain hb such that H1(wb) = hb, where
b ∈ {0, 1}. Let <wb, hb, eb, coinb> be the response tuple. If both coin0 = 1 and coin1 = 1, B ends
the game. Else, B randomly picks 'k ∈ *

pZ and lets r = /′ ⋅k a y∈ *
pZ , and calculates A* = , *

r
DO iPK

= ()′⋅y y rg = /()′ ′⋅ ⋅y y k a yg = /′ ′⋅y k ag ; chooses Z ∈{0, 1}hlen at random and sets B* = Z. Finally, it
responds with the challenge ciphertext C* = (A*, B*).

Phase 2: A2 makes more oracle queries, but with the constraints as defined in Game 2.
Guess: At last, A2 outputs a guess b′ ∈ {0, 1}. B randomly picks a tuple (t, V) from H2-list

and outputs 1/ ′⋅be kt as its solution to the given 1-BDHI problem.
Similar to the proof of Theorem 1, it can be deduced that the lower bound on B’s advantage

is
2

/ ()td Heq qε .
Theorem 3. The KU-CS-PEKS scheme satisfies the DOST-IND-CKA security under the

hardness assumption of the HDH problem in the random oracle model.
Proof: Presuming that an adversary A3 breaks the DOST -IND-CKA security of the KU-

CS-PEKS scheme with an advantage ε. Then an algorithm B can be created to solve the HDH
problem with advantageε ε′ = . Given an instance {p, g, G, GT, e, ga, gb, η, H} of the HDH
problem, where H: G → {0, 1}hlen is a hash function and η is either H(gab) or a random element
of G. B’s goal is to decide whether η = H(gab).

B plays with A3 as below:
Setup: B picks a, l ∈ *

pZ at random, sets PKS = gal and SKS = al. Then, B gives gp = {p, g,
G, GT, e, H, H1, H2} and PKS to A3, where H, H1 and H2 are three random oracles.

Phase 1: A3 is capable of make these queries:
- Random oracle HO : B holds a list H-list that is made up of the tuples <M, N>. When

getting a query H(M) from A4, B outputs N if <M, N> is already in H-list. Otherwise, B
randomly picks N ∈ {0, 1}hlen and sets H(M) = N. Finally, B records a new tuple <M, N> onto
H-list and responds with N.

- Random oracle
1HO : B holds a list H1-list that is made up of tuples <w, h>. When getting

a query H1(w) from A4, B outputs h if <w, h> is already in H1-list. Otherwise, B randomly picks
h ∈ G and sets H1(w) = h. Finally, B records a new tuple <w, h> onto H1-list and returns h.

- Random oracle
2HO : B holds a list H2-list that is made up of the tuples <t, V>. When

getting a query H2(t) from A4, B outputs V if <t, V> is already in H2-list. Otherwise, B randomly
selects V ∈ {0, 1}hlen and sets H2(t) = V. Finally, B records a new tuple <t, V> onto H2-list and

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 1, January 2022 279

returns V.
- Uncorrupted key generation oracle Opk: B holds a list LU that is made up of the tuples <i,

PKDO,i, xi>. When A3 inputs a time period index i, B responds as below: B responds with PKDO,i,
if i is already in LU with a tuple <i, PKDO,i, xi>. Else, B randomly selects xi ∈ *

pZ and sets PKDO,i

= ixg . Then B records the tuple <i, PKDO,i, xi> onto LU and returns PKDO,i.
- Corrupted key generation oracle Osk: B holds a list LU of tuples <j, PKDO,j, xj>. When A3

inputs a time period index j and j ≠ i, B responds as below: If j is already in LC with a tuple <j,
PKDO,j, xj>, then B answers with (PKDO,j = jxg , SKDO,j = xj). Otherwise, B selects a random

value xj and sets PKDO,j = jxg . Then B records the tuple <j, PKDO,j, xj> onto the LC and returns

(PKDO,j = jxg , SKDO,j = xj).
- Update key generation oracle Ouk: With the input of two distinct time period indices (k, l)

by the adversary, PKDO,k and PKDO,l both appear on the LU or LC. B responds A3 with ukk→l = xl
/xk.

- Update ciphertext generation oracle Ouc: With the input of two distinct time period indices
(k, l) and a keyword ciphertext ,

w
DO kCT by the adversary. PKDO,k and PKDO,l both appear on the

LU or LC. B obtains the update key ukk→l = xl /xk from Ouk and returns the update ciphertext
,

w
DO lCT = (A, B) = (,

r
DO lPK , H2(e(PKS, H1(w))r)).

- Search token generation oracle Ost: With the input of a time period index i and a keyword
w by A3, B picks ′r ∈ *

pZ at random and calculates T1 = ′rg and T2 = 1/
1()′ ixH w · ()′r

SH PK . B
returns A3 with Tw = (T1, T2).

-Test oracle Ote: With the input of (,
w

DO iCT , ′wT) by the adversary, the algorithm B outputs
1 if the equation B = H2(e(A,τ a) holds or 0 otherwise.

Challenge: Once the Phase1 is finish, A3 inputs two distinct keywords (w0, w1) where |w0|
= |w1| and a time period index i*. B picks a value c ∈ {0, 1} at random and sets *

1T = /b lg and
*

2T = *1/
1() i

x
cH w η⋅ . Ifη =H(gab), then *

cwT is a valid challenge token. If r* = b / l, then *
1T =

*rg ,
*

2T = *1/
1() i

x
cH w η⋅ = *,

1/

1() DO i
SK

cH w ﹒H(gab) = *,
1/

1() DO i
SK

cH w ﹒H((/)al b lg ⋅) = *,
1/

1() DO i
SK

cH w
()′r

SH PK . Finally, it responds with the challenge token *
cwT = (*

1T , *
2T).

Phase 2: A3 makes more oracle queries, but with the constraints as defined in Game 3.
Guess: At last, A3 outputs a guess ′c . If c = ′c , B output 1, meaning that η = H(gab)or 0

otherwise.
The advantage of B in solving the given HDH problem is analyzed as below.
According to Game 3, whenη =H(gab), the view of the adversary A3 in common with its

guess ′c satisfies |Pr[c = ′c]- 1/2| = ε. On the other side, whenη′ is uniform over G, its guess ′c
satisfies Pr[c = ′c] = 1/2. Consequently, the advantage of B in solving the given HDH problem
is |Pr[B(g, ga, gb, H(gab)) = 0] - Pr[B(g, ga, gb,η′)) = 0]| ≧ |1/2 ± ε -1/2| = ε.

Theorem 4. The KU-CS-PEKS scheme satisfies the AUST-IND-CKA security under the
hardness assumption of the HDH problem in the random oracle model.

Proof: Presuming that an adversary A4 breaks the AUST -IND-CKA security of the KU-
CS-PEKS scheme with an advantage ε. Then an algorithm B can be created to solve the HDH
problem with advantageε ε′ = . Given an instance {p, g, G, GT, e, ga, gb, η, H} of the HDH
problem, where H: G → {0, 1}hlen is a hash function and η is either H(gab) or a random element

280 Wang et al.: Privacy-Preserving Key-Updatable Public Key Encryption with
Keyword Search Supporting Ciphertext Sharing Function

of G. B’s goal is to decide whether η = H(gab). B plays with A4 as below:
Setup: B randomly picks a, l ∈ *

pZ , sets PKS = gal and SKS = al. Then, B gives gp = {p, g,
G, GT, e, H, H1, H2} and PKS to A4, where H, H1 and H2 are three random oracles.

Phase 1: A4 is capable of make these queries:
- Random oracle HO : B holds a list H-list that is made up of the tuples <M, N>. When

getting a query H(M) from A4, B outputs N if <M, N> is already in H-list. Otherwise, B
randomly picks N ∈ {0, 1}hlen and sets H(M) = N. Finally, B records a new tuple <M, N> onto
H-list and responds with N.

- Random oracle
1HO : B holds a list H1-list that is made up of tuples <w, h>. When getting

a query H1(w) from A4, B outputs h if <w, h> is already in H1-list. Otherwise, B randomly picks
h ∈ G and sets H1(w) = h. Finally, B records a new tuple <w, h> onto H1-list and returns h.

- Random oracle
2HO : B holds a list H2-list that is made up of the tuples <t, V>. When

getting a query H2(t) from A4, B outputs V if <t, V> is already in H2-list. Otherwise, B randomly
selects V ∈ {0, 1}hlen and sets H2(t) = V. Finally, B records a new tuple <t, V> onto H2-list and
returns V.

- Uncorrupted key generation oracle Opk: B holds a list LU that is made up of the tuples
<PKAU, xAU>. When A4 queries this oracle, B selects xAU ∈ *

pZ at random and sets PKAU = AUxg .
B records the tuple <PKAU, xAU> onto LU and returns PKAU.

- Corrupted key generation oracle Osk: B holds a list LC that is made up of the tuples <PKAU,
xAU>. When A2 queries this oracle, B selects xAU ∈ *

pZ at random and sets PKAU = AUxg . B records

the tuple <PKAU, xAU> onto LC and returns (PKAU = AUxg , SKAU = xAU).
- Re-encryption key generation oracle Ork: With the input of (PKDO,i, PKAU) by the

adversary, algorithm B returns the re-encryption key rkDO→AU = xAU / xi.
- Share ciphertext generation oracle Osc: With the input of (,

w
DO iCT , rkDO→AU) by the

adversary, algorithm B returns the share ciphertext w
AUCT = (A, B) = (r

AUPK , H2(e(PKS,
H1(w))r)).

- Search token generation oracle Ost: With the input of a keyword w and a public key PKAU
by the adversary, B randomly chooses and calculates T1 = ′rg and T2 = 1/

1()′ AUxH w · ()′r
SH PK .

B responds A4 with Tw = (T1, T2).
- Test oracle Ote: With the input of (w

AUCT , ′wT) by the adversary, the algorithm B outputs 1
if the equation B = H2(e(A,τ a) holds or 0 otherwise.

Challenge: Once the Phase1 is finish, A4 inputs two distinct keywords (w0, w1) where |w0|
= |w1| and a public key *

AUPK . B randomly picks c ∈ {0, 1} and sets *
1T = /b lg and *

2T =
*1/

1() AU
x

cH w η⋅ . Ifη =H(gab) then *
cwT is a valid challenge token. If r* = b / l, then *

1T =
*rg , *

2T

= *1/
1() AU

x
cH w η⋅ =

*1/
1() AUSK

cH w ﹒ H(gab) =
*1/

1() AUSK
cH w ﹒ H((/)al b lg ⋅) =

*1/
1() AUSK

cH w
()′r

SH PK . Finally, it responds with the challenge token *
cwT = (*

1T , *
2T).

Phase 2: A4 issues more queries, but with the restrictions as defined in Game 4.
Guess: At last, A4 outputs a guess ′c ∈ {0, 1}. If c = ′c , B outputs 1, meaning thatη =

H(gab)or 0 otherwise.
Similar to the proof of Theorem 3, it can be deduced that the lower bound on B’s advantage

is ε.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 1, January 2022 281

5. Performance Evaluation
We first compare the properties of the existing KU-PEKS framework [34] and the KU-CS-
PEKS framework. The details are shown in Table 1. From the table, it is easy to see that the
KU-CS-PEKS framework enjoys some good properties such as supporting privacy-preserving
ciphertext update on the storage server and transmitting the search tokens without secure
channel, while providing ciphertext sharing function.

Table 1. Properties of the KU-PEKS framework and the KU-CS-PEKS framework

Frameworks Supporting
key update

Supporting
privacy-preserving
ciphertext update

Supporting
ciphertext

sharing

Considering
search token

privacy

No
secure

channel
KU-PEKS yes no no no no

KU-CS-PEKS yes yes yes yes yes

Table 2. Computational efficiency of the compared schemes
Schemes KWCipherGen CiphertextUpdate CiphertextShare SearchTokenGen Test

KU-
PEKS

4TE + TH + TMP
+ TP+ TM

5TE + TH + TMP +
TP + TM + TI

- TMP + TE TH +
TP

KU-CS-
PEKS

TE + TET + TH
+ TMP + TP TE TE TH + TMP + 3TE

2TH +
TP +
2TE

Table 3. Communicational efficiency of the compared schemes

Schemes Length of a keyword ciphertext Length of a search token
KU-PEKS 3|G| + l |G|

KU-CS-PEKS |G| + l 2|G|

Table 4. Time cost of each basic operation and bit-length of an element/hash value
Running time (ms) Bit-length (bit)

TH TP TMP TE TET TM TI |G| l
0.005 1.6 4.3 0.2 0.008 0 0.002 512 256

Table 2 and Table 3 respectively give the computational efficiency comparison and the

communicational efficiency comparison of the KU-PEKS scheme [34] and the proposed KU-
CS-PEKS scheme, where TH, TP, TMP, TE, TET, TM and TI are the running time of a cryptographic
hash operation, a bilinear pairing operation, a map-to-point encoding operation, an exponent
operation in G, an exponent operation in GT, a modular multiplication operation in Zp and a
modular inverse operation in Zp respectively, l and |G| respectively denote the bit-size of a
hash value and the bit-size of an element in G.

To evaluate the computational efficiency, the schemes are tested by the PBC library [40].
The experiments are carried out on a laptop and Linux OS with an Intel Core i5-4210U CPU
of 1.7GHz and 3.0GB RAM. The bilinear pairing is simulated by the Type-A pairing, which
is defined on the curve y2 = x3 + x over the finite field Fq for prime q ≡ 3 mod 4. Besides, the
hash functions are implemented by SHA-256. Table 4 gives the time cost of each basic
operation and bit-length of a group element or a hash value.

282 Wang et al.: Privacy-Preserving Key-Updatable Public Key Encryption with
Keyword Search Supporting Ciphertext Sharing Function

The experimental results (see Fig. 1 ~ Fig. 4) show that the costs of the SearchTokenGen
algorithm and the Test algorithm in the KU-CS-PEKS scheme are higher than that of the KU-
PEKS scheme, but the costs of the KWCiphertextGen algorithm and the CiphertextUpdate
algorithm are lower than that of the KU-PEKS scheme. Specifically, the time for encrypting a
keyword in the KU-CS-PEKS scheme is about 6.113ms, while that in the KU-PEKS scheme
is about 6.705ms. The time for updating a keyword ciphertext in the KU-CS-PEKS scheme is
about 0.2ms, while that in the KU-PEKS scheme is about 6.907ms. The time for generating a
search token in the KU-CS-PEKS scheme is about 4.905ms, while that in the KU-PEKS
scheme is about 4.5ms. In addition, the time for matching a keyword ciphertext with a search
token in the KU-CS-PEKS scheme is about 2.01ms, while that in KU-PEKS scheme is about
1.605ms.

Fig. 1. Time cost of keyword ciphertext

generation algorithm

Fig. 2. Time cost of keyword ciphertext update
algorithm

Fig. 3. Time cost of search token generation

algorithm
Fig. 4. Time cost of test algorithm

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 1, January 2022 283

Regarding the communication overhead (as illustrated in Fig. 5), the keyword ciphertext

length in KU-CS-PEKS scheme is 768 bits, while the keyword ciphertext length in the KU-
PEKS scheme is 1792 bits. Besides, the size of a search token in KU-CS-PEKS scheme is
1024 bits, while that in the KU-PEKS scheme is 512 bits. Compared with the KU-PEKS
scheme, the KU-CS-PEKS scheme has shorter keyword ciphertext and longer search token.

Fig. 5. Bit-length of keyword ciphertext and search token

To remove secure channels and achieve search token indistinguishability, the KU-CS-

PEKS scheme has to generate longer search tokens and consumes more time in search token
generation and match testing. However, the additional costs are worthwhile, because the
proposed scheme effectively fixes the inherent security weaknesses in the previous KU-PEKS
scheme.

 6. Conclusion
This paper presents a PEKS framework, named key-updatable and ciphertext-sharable

PEKS (KU-CS-PEKS). After formally defining its security (including the keyword ciphertext
indistinguishability and the search token indistinguishability), a concrete KU-CS-PEKS
scheme that is proven secure in the random oracle model is given. The KU-CS-PEKS scheme
realizes privacy-preserving ciphertext update on the storage server and ciphertext sharing
functions, while removing the secure channel requirement. The experimental results and
comparisons demonstrate that the KU-CS-PEKS scheme is feasible and applicable.

References
[1] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches on encrypted data,” in

Proc. of IEEE Symp. Secur. Privacy, pp. 44–55, May, 2000. Article (CrossRef Link)
[2] P. Golle, J. Staddon, and B. Waters, “Secure conjunctive keyword search over encrypted data,” in

Proc. of ACNS, pp. 31–45, 2004. Article (CrossRef Link)
[3] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable symmetric encryption: Improved

definitions and efficient constructions,” in Proc. of 13th ACM Conf. Comput. Commun. Secur., pp.
79–88, Oct. 2006. Article (CrossRef Link)

https://doi.org/10.1109/SECPRI.2000.848445
https://doi.org/10.1007/978-3-540-24852-1_3
https://doi.org/10.1145/1180405.1180417

284 Wang et al.: Privacy-Preserving Key-Updatable Public Key Encryption with
Keyword Search Supporting Ciphertext Sharing Function

[4] Z. Fu, X. Wu, C. Guan, X. Sun, and K. Ren, “Toward efficient multi-keyword fuzzy search over
encrypted outsourced data with accuracy improvement,” IEEE Trans. Inf. Forensics Security, vol.
11, no. 12, pp. 2706–2716, July. 2016. Article (CrossRef Link)

[5] Z. Xia, X. Wang, X. Sun, and Q. Wang, “A secure and dynamic multi-keyword ranked search
scheme over encrypted cloud data,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 2, pp. 340–
352, Feb. 2015. Article (CrossRef Link)

[6] X. Liu, G. Yang, Y. Mu and R. H. Deng, “Multi-User Verifiable Searchable Symmetric Encryption
for Cloud Storage,” IEEE Trans. Dependable Secure Comput., vol. 17, no. 6, pp. 1322-1332, 2020.
Article (CrossRef Link)

[7] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public key encryption with keyword
search,” in Proc. of Int. Conf. Theory Appl. Cryptograph. Techn, pp. 506–522, 2004.
Article (CrossRef Link)

[8] C. Gu, Y. Zhu, and H. Pan, “Efficient public key encryption with keyword search schemes from
pairings,” in Proc. of Int. Conf. Inf. Secur. Cryptol, pp. 372–383, 2008. Article (CrossRef Link)

[9] B. Zhang and F. Zhang, “An efficient public key encryption with conjunctive-subset keywords
search,” J. Netw. Comput. Appl., vol. 34, no. 1, pp. 262–267, Jan. 2011. Article (CrossRef Link)

[10] D. J. Park, K. Kim, and P. J. Lee, “Public key encryption with conjunctive field keyword search,”
in Proc. of Int. Workshop Inf. Secur. Appl, pp. 73–86, 2004. Article (CrossRef Link)

[11] J. Baek, R. Safavi-Naini, and W. Susilo, “On the integration of public key data encryption and
public key encryption with keyword search,” in Proc. of Int. Conf. Inf. Secur, pp. 217–232, 2006.
Article (CrossRef Link)

[12] Q. Tang and L. Chen, “Public-key encryption with registered keyword search,” in Proc. of Eur.
Public Key Infrastruct, pp. 163–178, Sep. 2009. Article (CrossRef Link)

[13] Q. Dong, Z. Guan, L. Wu, and Z. Chen, “Fuzzy keyword search over encrypted data in the public
key setting,” in Proc. of Int. Conf. Web-Age Inf. Manage, pp. 729–740, June. 2013.
Article (CrossRef Link)

[14] J. Shi, J. Lai, Y. Li, R. H. Deng, and J. Weng, “Authorized keyword search on encrypted data,” in
Proc. of Eur. Symp. Res. Comput. Secur, pp. 419–435, 2014. Article (CrossRef Link)

[15] Z. Lv, C. Hong, M. Zhang, and D. Feng, “Expressive and secure searchable encryption in the
public key setting,” in Proc. of Int. Conf. Inf. Secur, pp. 364–376, 2014. Article (CrossRef Link)

[16] Y. Chen, J. Zhang, D. Lin, and Z. Zhang, “Generic constructions of integrated PKE and PEKS,”
Des. Codes Cryptogr., vol. 78, no. 2, pp. 493–526, Feb. 2016. Article (CrossRef Link)

[17] H. Cui, Z. Wan, R. Deng, G. Wang, and Y. Li, “Efficient and expressive keyword search over
encrypted data in cloud,” IEEE Trans. Dependable Secure Comput., vol. 15, no. 3, pp. 409–422,
May. 2018. Article (CrossRef Link)

[18] L. Li, C. Xu, X. Yu, B. Dou and C. Zuo, "Searchable encryption with access control on keywords
in multi-user setting," Journal of Cyber Security, vol. 2, no. 1, pp. 9–23, Jan. 2020.
Article (CrossRef Link)

[19] X. Li, F. Li, J. Jiang, and X. Mei, “Paillier-based fuzzy multi-keyword searchable encryption
scheme with order-preserving,” Computers, Materials & Continua, vol. 65, no. 2, pp. 1707–1721,
Jan. 2020. Article (CrossRef Link)

[20] J. Baek, R. Safavi-Naini, and W. Susilo, “Public key encryption with keyword search revisited,”
in Proc. of Int. Conf. Comput. Sci. Appl, pp. 1249–1259, 2008. Article (CrossRef Link)

[21] H. S. Rhee, J. H. Park, W. Susilo, and D. H. Lee, “Improved searchable public key encryption with
designated tester,” in Proc. of 4th Int. Symp. Inf., Comput., Commun. Secur, pp. 376–379, Jan.
2009. Article (CrossRef Link)

[22] H. S. Rhee, J. H. Park, W. Susilo, and D. H. Lee, “Trapdoor security in a searchable public-key
encryption scheme with a designated tester,” J. Syst. Softw., vol. 83, no. 5, pp. 763–771, May.
2010. Article (CrossRef Link)

[23] C. Hu and P. Liu, “A secure searchable public key encryption scheme with a designated tester
against keyword guessing attacks and its extension,” in Proc. of Int. Conf. Comput. Sci., Environ.,
Ecoinform., Educ, vol. 215, pp. 131-136, 2011. Article (CrossRef Link)

https://doi.org/10.1109/TIFS.2016.2596138
https://doi.org/10.1109/TPDS.2015.2401003
https://doi.org/10.1109/TDSC.2018.2876831
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-79499-8_29
https://doi.org/10.1016/j.jnca.2010.07.007
https://doi.org/10.1007/978-3-540-31815-6_7
https://doi.org/10.1007/11836810_16
https://doi.org/10.1007/978-3-642-16441-5_11
https://doi.org/10.1007/978-3-642-38562-9_74
https://doi.org/10.1007/978-3-319-11203-9_24
https://doi.org/10.1007/978-3-319-13257-0_21
https://doi.org/10.1007/s10623-014-0014-x
https://doi.org/10.1109/TDSC.2016.2599883
https://doi.org/10.32604/jcs.2020.06313
https://doi.org/10.32604/cmc.2020.011227
https://doi.org/10.1007/978-3-540-69839-5_96
http://dx.doi.org/10.1145/1533057.1533108
http://dx.doi.org/10.1145/1533057.1533108
https://doi.org/10.1016/j.jss.2009.11.726
https://doi.org/10.1007/978-3-642-23324-1_23

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 1, January 2022 285

[24] H. S. Rhee, J. H. Park, and D. H. Lee, “Generic construction of designated tester public-key
encryption with keyword search,” Inf. Sci., vol. 205, no. 1, pp. 93–109, Nov. 2012.
Article (CrossRef Link)

[25] L. Fang, W. Susilo, C. Ge, and J. Wang, “Public key encryption with keyword search secure
against keyword guessing attacks without random oracle,” Inf. Sci., vol. 238, pp. 221–241, July.
2013. Article (CrossRef Link)

[26] Y. Lu, G. Wang, and J. Li, “Keyword guessing attacks on a public key encryption with keyword
search scheme without random oracle and its improvement,” Inf. Sci., vol. 479, pp. 270–276, Apr.
2019. Article (CrossRef Link)

[27] T. Wu, T. Tsai, and Y. Tseng, “Efficient searchable id-based encryption with a designated server,”
Ann. Telecommun., vol. 69, no. 7–8, pp. 391–402, Aug. 2014. Article (CrossRef Link)

[28] Y. Lu, G. Wang, J. Li, and J. Shen, “Efficient designated server identity-based encryption with
conjunctive keyword search,” Ann. Telecommun., vol. 72, no. 5–6, pp. 359–370, June 2017.
Article (CrossRef Link)

[29] J. Liu, J. Lai, and X. Huang, “Dual trapdoor identity-based encryption with keyword search,” J.
Soft Comput., vol. 21, no. 10, pp. 2599-2607, May 2017. Article (CrossRef Link)

[30] Y. Peng, J. Cui, C. Peng, and Z. Ying, “Certificateless public key encryption with keyword search,”
China Commun., vol. 11, no. 11, pp. 100–113, Nov. 2014. Article (CrossRef Link)

[31] Y. Lu, J. Li, and F. Wang, “Pairing-free certificate-based searchable encryption supporting
privacy-preserving keyword search function for IIoTs,” IEEE. Trans. Industr. Inform., vol. 17, no.
4, pp. 2696–2706, Apr. 2021. Article (CrossRef Link)

[32] X. Yu, C. Xu, L. Xu and Y. Wang, “Lattice-based searchable encryption scheme against inside
keywords guessing attack,” Computers, Materials & Continua, vol. 64, no. 2, pp. 1107–1125, 2020.
Article (CrossRef Link)

[33] M. Ali, C. Xu and A. Hussain, "Authorized attribute-based encryption multi-keywords search with
policy updating," Journal of New Media, vol. 2, no.1, pp. 31–43, Aug. 2020.
Article (CrossRef Link)

[34] H. Anada, A. Kanaoka, N. Matsuzaki, Y. Watanabe, “Key-updatable public-key encryption with
keyword search: models and generic constructions,” Information Security and Privacy, pp. 341–
359, June. 2018. Article (CrossRef Link)

[35] J. Shao, Z. Cao, X. Liang and H. Lin, “Proxy re-encryption with keyword search,” Inf. Sci., vol.
180, no. 13, pp. 2576–2587, July. 2010. Article (CrossRef Link)

[36] R. Canetti, S. Hohenberger, “Chosen-ciphertext secure proxy re-encryption,” in Proc. of ACM
CCS, pp. 185–194, Oct. 2007. Article (CrossRef Link)

[37] Y. Liu, Y. Ren, Q. Wang and J. Xia, "The development of proxy re-encryption," Journal of Cyber
Security, vol. 2, no. 1, pp. 1–8, Jan. 2020. Article (CrossRef Link)

[38] D. Boneh, X. Boyen, “Efficient selective-ID secure identity-based encryption without random
oracle,” in Proc. of Int. Conf. Theory Appl. Cryptograph. Techn, pp. 223–238, 2004.
Article (CrossRef Link)

[39] M. Abdalla, M. Bellare, P. Rogaway, “The oracle Diffie–Hellman assumptions and an analysis of
DHIES,” in Proc. of Naccache, D. (ed.) CT-RSA 2001, vol. 2020, pp. 143–158. April. 2001.
Article (CrossRef Link)

[40] B. Lynn, PBC library: The Pairing-Based Cryptography Library, 2013. [Online]. Available:
http://crypto.stanford.edu/pbc.

https://doi.org/10.1016/j.ins.2012.03.020
https://doi.org/10.1016/j.ins.2013.03.008
https://doi.org/10.1016/j.ins.2018.12.004
https://doi.org/10.1007/s12243-013-0398-z
https://doi.org/10.1007/s12243-017-0574-7
https://doi.org/10.1007/s00500-015-1960-6
https://doi.org/10.1109/CC.2014.7004528
https://doi.org/10.1109/TII.2020.3006474
http://dx.doi.org/10.32604/cmc.2020.09680
http://dx.doi.org/10.32604/jnm.2020.09946
https://doi.org/10.1007/978-3-319-93638-3_20
https://doi.org/10.1016/j.ins.2010.03.026
https://doi.org/10.1145/1315245.1315269
http://dx.doi.org/10.32604/jcs.2020.05878
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/3-540-45353-9_12

286 Wang et al.: Privacy-Preserving Key-Updatable Public Key Encryption with
Keyword Search Supporting Ciphertext Sharing Function

Fen Wang received the B.S. degree in computer science from Maanshan University, Anhui,
China, in 2018. She is working toward the M.S. degree in computer science in Nanjing
Normal University, Nanjing, China. Her research interests include cryptography and
information security.

Yang Lu received the Ph.D. degree in computer science from PLA University of Science
and Technology, Nanjing, China, in 2009. He is currently a Professor with the School of
Computer Science and Technology, Nanjing Normal University, Nanjing, China. His
research interests include cryptography and information security, cloud computing, etc.

Zhongqi Wang received the B.S. degree in information management and information
system from Nanjing Normal University, Nanjing, China, in 2020. Now, he is a research
student of the Risk and Resilience Program of Graduate School of Science and Technology,
University of Tsukuba, Japan. His research interests include information security,
cryptography theory and application.

Jinmei Tian received the B.S. degree in computer science from Hainan Normal University,
Hainan, China, in 2019. She is working toward the M.S. degree in computer science in
Nanjing Normal University, Nanjing, China. Her research interests include cryptography and
information security.

