• Title/Summary/Keyword: encoding specificity

Search Result 69, Processing Time 0.023 seconds

Identification and Characterization of a Novel Thermostable GDSL-Type Lipase from Geobacillus thermocatenulatus

  • Jo, Eunhye;Kim, Jihye;Lee, Areum;Moon, Keumok;Cha, Jaeho
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.483-491
    • /
    • 2021
  • Two putative genes, lip29 and est29, encoding lipolytic enzymes from the thermophilic bacterium Geobacillus thermocatenulatus KCTC 3921 were cloned and overexpressed in Escherichia coli. The recombinant Lip29 and Est29 were purified 67.3-fold to homogeneity with specific activity of 2.27 U/mg and recovery of 5.8% and 14.4-fold with specific activity of 0.92 U/mg and recovery of 1.3%, respectively. The molecular mass of each purified enzyme was estimated to be 29 kDa by SDS-PAGE. The alignment analysis of amino acid sequences revealed that both enzymes belonged to GDSL lipase/esterase family including conserved blocks with SGNH catalytic residues which was mainly identified in plants before. While Est29 showed high specificity toward short-chain fatty acids (C4-C8), Lip29 showed strong lipolytic activity to long-chain fatty acids (C12-C16). The optimal activity of Lip29 toward p-nitrophenyl palmitate as a substrate was observed at 50℃ and pH 9.5, respectively, and its activity was maintained more than 24 h at optimal temperatures, indicating that Lip29 was thermostable. Lip29 exhibited high tolerance against detergents and metal ions. The homology modeling and substrate docking revealed that the long-chain substrates showed the greatest binding affinity toward enzyme. Based on the biochemical and insilico analyses, we present for the first time a GDSL-type lipase in the thermophilic bacteria group.

Molecular Cloning and Characterization of Trehalose Biosynthesis Genes from Hyperthermophilic Archaebacterium Metallosphaera hakonesis

  • Seo, Ju-Seok;An, Ju-Hee;Baik, Moo-Yeol;Park, Cheon-Seok;Cheong, Jong-Joo;Moon, Tae-Wha;Park, Kwan-Hwa;Choi, Yang-Do;Kim, Chung-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.123-129
    • /
    • 2007
  • The trehalose $({\alpha}-D-glucopyranosyl-[1,1]-{\alpha}-D-glucopyranose)$ biosynthesis genes MhMTS and MhMTH, encoding a maltooligosyltrehalose synthase (MhMTS) and a maltooligosyltrehalose trehalohydrolase (MhMTH), respectively, have been cloned from the hyperthermophilic archaebacterium Metallosphaera hakonesis. The ORF of MhMTS is 2,142 bp long, and encodes 713 amino acid residues constituting a 83.8 kDa protein. MhMTH is 1,677 bp long, and encodes 558 amino acid residues constituting a 63.7 kDa protein. The deduced amino acid sequences of MhMTS and MhMTH contain four regions highly conserved for MTSs and three for MTHs that are known to constitute substrate-binding sites of starch-hydrolyzing enzymes. Recombinant proteins obtained by expressing the MhMTS and MhMTH genes in E. coli catalyzed a sequential reaction converting maltooligosaccharides to produce trehalose. Optimum pH of the MhMTS/MhMTH enzyme reaction was around 5.0 and optimum temperature was around 70 C. Trehalose-producing activity of the MhMTS/ MhMTH was notably stable, retaining 80% of the activity after preincubation of the enzyme mixture at $70^{\circ}C$ for 48 h, but was gradually abolished by incubating at above $85^{\circ}C$. Addition of thermostable $4-{\alpha}-glucanotransferase$ increased the yield of trehalose production from maltopentaose by 10%. The substrate specificity of the MhMTS/MhMTH-catalyzed reaction was extended to soluble starch, the most abundant maltodextrin in nature.

Detection of Human Taurine Transporter and Production of Monoclonal Antibody

  • An, Hye-Suk;Han, Hee-Chang;Lee, Sun-Min;Park, Taesun;Park, Kun-Koo;Kim, Ha-Won
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.102-102
    • /
    • 2001
  • Taurine (2-ethaneaminosulfonic acid) is one of the major intracellular ${\beta}$ -amino acids in mammals and is required for a number of biological processes including membrane stabilization, osmoregulation, antioxidation, detoxification, modulation of calcium flux and neurornodulation. The taurine transporter (TAUT) which contains 12 hydrophobic membrane-spanning domains has been cloned from dog kidney, rat brain, mouse brain, human thyroid, placenta and retina. In this study, The TAUT cDNA from the human intestinal epithelial cell, HT-29 was cloned and sequenced. Reverse-transcription polymerase chain reaction (RT-PCR) was performed to amplify partial cDNA encoding human intestinal TAUT. The coding region of the PCR product was 732 bp long. The primers were designed to encode highly conserved amino acid sequences near the transmembrane domains III (IPYFIFLF) and Ⅵ (KYKYNSYR) both in human and mouse. The TAUT cDNA amplified was ligated into the pGEX 4T-1 expression vector. The resulting sequence of human intestinal TAUT cDNA (Accession number of NCBI Genebank is AF346763) was identical to the sequences of the TAUTs previously determined in the human placenta and retina except 3 base pairs from that of the reported human thyroid. TAUT specific antibodies were generated to use them as biological tools in the studies of the biological role of TAUT. Peptides of 149-162 amino acid residue (14 amino acids) of the TAUT were synthesized. The synthetic peptide used in this study was LFQSFQKELPWAHC. This region was chosen not only to avoid putative glycosylation sites but also to exclude regions of known homology with GABA transporters in the extracellular hydrophilic domains. The synthetic peptide, TAUT-1 was conjugated with carrier protein, kehole lympet hemocyanin (KLH) to use as an antigen. When used for immunization on a rabbit to produce polyclonal antiserum, the conjugates elicited high -titered specific anti-TAUT-1 antibodies, which reacted well with the ovalbumin (OVA) conjugated peptides in ELISA. The KLH-conjugated peptide was also used as immunizing antigen in BALB/c mice to produce TAUT specific monoclonal antibodies. From the culture supernatant of the hybridoma, the specificity of anti-TAUT-1 monoclonal antibodies was confirmed by ELISA. Further applications of more tools in TAUT expression analysis will be performed such as western blotting and flow cytometry.

  • PDF

Monoclonal antibodies to recombinant Der p2, a major house dust mite allergen: specificity, epitope analysis and development of two-site capture ELISA

  • Yong, Tai-Soon;Lee, Sang-Mi;Park, Gab-Man;Lee, In-Yong;Ree, Han-Il;Kim, Kyung-Sup;Oh, Sang-Hwan;Park, Jung-Won;Hong, Chein-Soo
    • Parasites, Hosts and Diseases
    • /
    • v.37 no.3
    • /
    • pp.163-169
    • /
    • 1999
  • House dust mite allergens have been well established as sensitizing agents that are important in the induction of allergic diseases. In order to analyze epitopes of the allergen and to develop a quantitative method of the allergen exposure, monoclonal antibodies against a recombinant Der p 2 (rDer p 2), one of the major allergens of Dermatophogoides pteronyssinus, were produce. Four monoclonal antibodies produced wee species-specific and did not cross-react to the D. farinae crude extract. Two of the monoclonal antibodies were found to be IgG1 and the others were IgM. For the analysis of epitopes, a Der p 2 cDNA encoding 126 amino acids (aa) was dissected into three fragments with several overlapping peptides, A (aa residues 1-49), B (44-93), and C fragment (84-126). Three monoclonal antibodies showed reactivities to the recombinant B fragment and to the full-length rDer p 2, but one monoclonal antibody reacted only with the full-length rDer p 2. Two-site capture ELISA was developed using two different monoclonal antibodies for quantitating Der p2 in house dust. The sensitivity limit was 4ng/ml with rDer p2 and $8{\;}\mu\textrm{g}/ml$ with the d. pteronyssinus crude extract. The result suggested that the assay using monoclonal antibodies against rDer p2 could be useful for the environmental studies and for the standardization of mite allergen extracts.

  • PDF

Molecular Cloning and Expression of a Novel Protease-resistant GH-36 $\alpha$-Galactosidase from Rhizopus sp. F78 ACCC 30795

  • Yanan, Cao;Wang, Yaru;Luo, Huiying;Shi, Pengjun;Meng, Kun;Zhou, Zhigang;Zhang, Zhifang;Yao, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1295-1300
    • /
    • 2009
  • A 2,172-bp full-length gene (aga-F78), encoding a protease-resistant $\alpha$-galactosidase, was cloned from Rhizopus sp. F78 and expressed in Escherichia coli. The deduced amino acid sequence shared highest identity (45.0%) with an $\alpha$-galactosidase of glycoside hydrolase family 36 from Absidia corymbifera. After one-step purification with a Ni-NTA chelating column, the recombinant Aga-F78 migrated as a single band of ~82 and ~210 kDa on SDS-PAGE and nondenaturing gradient PAGE, respectively, indicating that the native structure of the recombinant Aga-F78 was a trimer. Exhibiting the similar properties as the authentic protein, purified recombinant Aga-F78 was optimally active at $50^{\circ}C$ and pH 4.8, highly pH stable over the pH range 5.0-10.0, more resistant to some cations and proteases, and had wide substrate specificity (pNPG, melidiose, raffinose, and stachyose). The recombinant enzyme also showed good hydrolytic ability to soybean meal, releasing galactose of $415.58\;{\mu}g/g$ soybean meal. When combined with trypsin, the enzyme retained over 90% degradability to soybean meal. These favorable properties make Aga-F78 a potential candidate for applications in the food and feed industries.

Novel Alkali-Tolerant GH10 Endo-${\beta}$-1,4-Xylanase with Broad Substrate Specificity from Microbacterium trichothecenolyticum HY-17, a Gut Bacterium of the Mole Cricket Gryllotalpa orientalis

  • Kim, Do Young;Shin, Dong-Ha;Jung, Sora;Kim, Hyangmi;Lee, Jong Suk;Cho, Han-Young;Bae, Kyung Sook;Sung, Chang-Keun;Rhee, Young Ha;Son, Kwang-Hee;Park, Ho-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.7
    • /
    • pp.943-953
    • /
    • 2014
  • The XylH gene (1,167-bp) encoding a novel hemicellulase (41,584 Da) was identified from the genome of Microbacterium trichothecenolyticum HY-17, a gastrointestinal bacterium of Gryllotalpa orientalis. The enzyme consisted of a single catalytic domain, which is 74% identical to that of an endo-${\beta}$-1,4-xylanase (GH10) from Isoptericola variabilis 225. Unlike other endo-${\beta}$-1,4-xylanases from invertebrate-symbiotic bacteria, rXylH was an alkali-tolerant multifunctional enzyme possessing endo-${\beta}$-1,4-xylanase activity together with ${\beta}$-1,3/${\beta}$-1,4-glucanase activity, which exhibited its highest xylanolytic activity at pH 9.0 and 60oC, and was relatively stable within a broad pH range of 5.0-10.0. The susceptibilities of different xylosebased polysaccharides to the XylH were assessed to be as follows: oat spelts xylan > beechwood xylan > birchwood xylan > wheat arabinoxylan. rXylH was also able to readily cleave p-nitrophenyl (pNP) cellobioside and pNP-xylopyranoside, but did not hydrolyze other pNP-sugar derivatives, xylobiose, or hexose-based materials. Enzymatic hydrolysis of birchwood xylan resulted in the product composition of xylobiose (71.2%) and xylotriose (28.8%) as end products.

Antigenic Determinant Mapping in preS2 Region of Hepatitis B Surface Antigen (B형 간염바이러스 표면항원 preS2 부위의 항원결정인자 규명)

  • 권기선;김창수;박주상;한문희;유명희
    • Korean Journal of Microbiology
    • /
    • v.28 no.1
    • /
    • pp.13-18
    • /
    • 1990
  • A DNA sequence encoding the adr subtype preS2 region of hepatitis B virus envelope protein was fused to 5' end of lacZ gene yielding a plasmid pTSZ, in order to produce a preS2-$\beta$-galactosidase fusion protein. Serial deletions from 3' and 5' end of preS2 were constructed in plasmids, which were expressed and their antigenicities were examined with the monoclonal antibody H8. Deletions from amino and carboxy terminal to certain points did not affect the antigenicity, but the longer deletions destroyed the antigenicity. End points of deleted preS2 sequence were determined by DNA sequencing. As a result, each end of preS2 epitope was located in the region of amino acid residue 130-132 and 140-142, respectively. Residue 143 may be supplementary for antigenic epitope since the deletion from carboxy terminal to residue 143 revealed partial defect of antigenicity. In the interval of antigenic epitope the amino acid differences between adr and adw2 subtype occurred ar residue 130, 132, and 141. This result indicated that one or more of the three residues are responsible for the binding specificity of monoclonal antibody H8 to adr subtype preS2 fusion protein.

  • PDF

Cis-acting Replication Element Variation of the Foot-and-mouth Disease Virus is Associated with the Determination of Host Susceptibility (구제역바이러스의 숙주 특이성 결정에 연관되어있는 구제역바이러스 cis-acting replication element 변이 분석 연구)

  • Kang, Hyo Rin;Seong, Mi So;Ku, Bok Kyung;Cheong, JaeHun
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.947-955
    • /
    • 2020
  • The foot-and-mouth disease virus (FMDV), a member of the Aphthovirus genus in the Picornaviridae family, affects wild and domesticated ruminants and pigs. During replication of the FMDV RNA (ribonucleic acid) genome, FMDV-encoding RNA polymerase 3D acts in a highly location-specific manner. This suggests that specific RNA structures recognized by 3D polymerase within non-coding regions of the FMDV genome assist with binding during replication. One such region is the cis-acting replication element (CRE), which functions as a template for RNA replication. The FMDV CRE adopts a stem-loop conformation with an extended duplex stem, supporting a novel 15-17 nucleotide loop that derives stability from base-stacking interactions, with the exact RNA nucleotide sequence of the CRE producing different RNA secondary structures. Here, we show that CRE sequences of FMDVs isolated in Korea from 2010 to 2017 exhibit A and O genotypes. Interestingly, variations in the RNA secondary structure of the Korean FMDVs are consistent with the phylogenetic relationships between these viruses and reveal the specificity of FMDV infections for particular host species. Therefore, we conclude that each genetic clade of Korean FMDV is characterized by a unique functional CRE and that the evolutionary success of new genetic lineages may be associated with the invention of a novel CRE motif. Therefore, we propose that the specific RNA structure of a CRE is an additional criterion for FMDV classification dependent on the host species. These findings will help correctly analyze CRE sequences and indicate the specificity of host species for future FMDV epidemics.

Cloning of $\beta$-Glucosidase Gene from Streptomyces coelicolor A3(2) and Characterization of the Recombinant $\beta$-Glucosidase Expressed in Escherichia coli (Streptomyces coelicolor A3(2)로 부터 $\beta$-Glucosidase 유전자 클로닝 및 재조합 효소의 특성)

  • Kim, Jae-Young;Kim, Bong-Kyu;Yi, Yong-Sub;Kang, Chang-Soo;Ahn, Joong-Hoon;Lim, Yoong-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.2
    • /
    • pp.99-104
    • /
    • 2009
  • The $\beta$-glucosidase gene from Streptomyces coelicolor A3(2) was cloned and expressed in Escherichia coli. The ORF consisted of 1377 nucleotides encoding 51 kDa in a predicted molecular weight. Effects of pH indicated that the $\beta$-glucosidase showed similar activity using $\alpha$-pNPG($\rho$-nitrophenyl-$\alpha$-D-glucopyranoside), $\beta$-pNPG($\rho$-nitrophenyl-$\beta$-D-glucopyranoside), and $\beta$-pNPF($\rho$-nitrophenyl-$\beta$-D-fucopyranoside) at range of pH 3 to 10, and high activity using $\beta$-pNPGA ($\rho$-nitrophenyl-$\beta$-D-galactopyranoside) from pH 5 to 10, especially, 3.3 times higher activity at pH 9. Effects of temperature indicated that the $\beta$-glucosidase showed low activity using $\alpha$-pNPG, $\beta$-pNPG, and $\beta$-pNPF from $20^{\circ}C$ to $70^{\circ}C$, and increased activity using $\beta$-pNPGA from $30^{\circ}C$ to $50^{\circ}C$, 1.8 times higher activity at $50^{\circ}C$ than at $30^{\circ}C$. According to activity determination of other substrates, the enzyme was active on daidzin, genistin, and glycitin, inactive on esculin and apigenin-7-glucose. The EDTA and DTT as reducing agents inhibited $\beta$-glucosidase activity, but SDS and mercaptoethanol did not inhibit. Monovalent or divalent metal ions such as $MnSO_4$, $CaCl_2$, KCl, and $MgSO_4$ did not inhibited $\beta$-glucosidase activity. $CuSO_4$ and NaCl showed low inhibition, and $ZnSO_4$ inhibited 3.3 times higher than control.