Browse > Article
http://dx.doi.org/10.4014/jmb.1405.05032

Novel Alkali-Tolerant GH10 Endo-${\beta}$-1,4-Xylanase with Broad Substrate Specificity from Microbacterium trichothecenolyticum HY-17, a Gut Bacterium of the Mole Cricket Gryllotalpa orientalis  

Kim, Do Young (Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Shin, Dong-Ha (Insect Biotech Co. Ltd.)
Jung, Sora (Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Kim, Hyangmi (Microbial Resource Center, KRIBB)
Lee, Jong Suk (Gyeonggi Bio-Center, Gyeonggi Institute of Science & Technology Promotion)
Cho, Han-Young (Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Bae, Kyung Sook (Microbial Resource Center, KRIBB)
Sung, Chang-Keun (Department of Food Science and Technology, Chungnam National University)
Rhee, Young Ha (Department of Microbiology and Molecular Biology, Chungnam National University)
Son, Kwang-Hee (Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Park, Ho-Yong (Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Publication Information
Journal of Microbiology and Biotechnology / v.24, no.7, 2014 , pp. 943-953 More about this Journal
Abstract
The XylH gene (1,167-bp) encoding a novel hemicellulase (41,584 Da) was identified from the genome of Microbacterium trichothecenolyticum HY-17, a gastrointestinal bacterium of Gryllotalpa orientalis. The enzyme consisted of a single catalytic domain, which is 74% identical to that of an endo-${\beta}$-1,4-xylanase (GH10) from Isoptericola variabilis 225. Unlike other endo-${\beta}$-1,4-xylanases from invertebrate-symbiotic bacteria, rXylH was an alkali-tolerant multifunctional enzyme possessing endo-${\beta}$-1,4-xylanase activity together with ${\beta}$-1,3/${\beta}$-1,4-glucanase activity, which exhibited its highest xylanolytic activity at pH 9.0 and 60oC, and was relatively stable within a broad pH range of 5.0-10.0. The susceptibilities of different xylosebased polysaccharides to the XylH were assessed to be as follows: oat spelts xylan > beechwood xylan > birchwood xylan > wheat arabinoxylan. rXylH was also able to readily cleave p-nitrophenyl (pNP) cellobioside and pNP-xylopyranoside, but did not hydrolyze other pNP-sugar derivatives, xylobiose, or hexose-based materials. Enzymatic hydrolysis of birchwood xylan resulted in the product composition of xylobiose (71.2%) and xylotriose (28.8%) as end products.
Keywords
Endo-${\beta}$-1,4-xylanase; GH10 enzyme; Microbacterium trichothecenolyticum HY-17; mole cricket; gut bacterium;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Calderon-Cortes N, Quesada M, Watanabe H, Cano- Camacho H, Oyama K. 2012. Endogenous plant cell wall digestion: a key mechanism in insect evolution. Annu. Rev. Evol. Syst. 43: 45-71.   DOI   ScienceOn
2 Adlakha N, Rajagopal R, Kumar S, Reddy VS, Yazdani SS. 2011. Synthesis and characterization of chimeric proteins based on cellulase and xylanase from an insect gut bacterium. Appl. Environ. Microbiol. 77: 4859-4866.   DOI   ScienceOn
3 Ali MK, Rudolph FB, Bennett GN. 2005. Characterization of thermostable Xyn10A enzyme from mesophilic Clostridium acetobutylicum ATCC 824. J. Ind. Microbiol. Biotechnol. 32: 12-18.   DOI   ScienceOn
4 Brune A, Friedrich M. 2000. Microecology of the termite gut: structure and function on a microscale. Curr. Opin. Microbiol. 3: 263-269.   DOI   ScienceOn
5 Cardona CA, Quintero JA, Paz IC. 2010. Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresour. Technol. 101: 4754-4766.   DOI   ScienceOn
6 Cazemier A E, V erdoes JC, v an O oyen A JJ, Op den Camp HJM. 1999. Molecular and biochemical characterization of two xylanase-encoding genes from Cellulomonas pachnodae. Appl. Environ. Microbiol. 65: 4099-4107.
7 Chen S, Kaufman MG, Miazgowicz KL, Bagdasarian M. 2013. Molecular characterization of a cold-active recombinant xylanase from Flavobacterium johnsoniae and its applicability in xylan hydrolysis. Bioresour. Technol. 128: 145-155.   DOI   ScienceOn
8 Cheng H-L, Tsai C-Y, Chen H-J, Yang S-S, Chen Y-C. 2009. The identification, purification, and characterization of STXF10 expressed in Streptomyces thermonitrificans NTU-88. Appl. Microbiol. Biotechnol. 82: 681-689.   DOI   ScienceOn
9 Collins T, Gerday C, Feller G. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23.   DOI   ScienceOn
10 Dheeran P, Nandhagopal N, Kumar S, Jaiswal YK, Adhikari DK. 2012. A novel thermostable xylanase of Paenibacillus macerans IIPSP3 isolated from the termite gut. J. Ind. Microbiol. Biotechnol. 39: 851-860.   DOI   ScienceOn
11 Gírio FM, Fonseca C, Carvalheiro F, Duarte S, Marques S, Bogel-Lukasik R. 2010. Hemicelluloses for fuel ethanol: a review. Bioresour. Technol. 101: 4775-4800.   DOI   ScienceOn
12 Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA. 2008. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nature Rev. Microbiol. 6: 121-131.   DOI   ScienceOn
13 Fontes CMGA, Gilbert HJ, Hazlewood GP, Clarke JH, Prates JAM, Mckie VA, et al. 2000. A novel Cellvibrio mixtus family 10 xylanase that is both intracellular and expressed under non-inducing conditions. Microbiology 146: 1959-1967.   DOI
14 Gallardo O, Diaz P, Pastor FIJ. 2003. Characterization of a Paenibacillus cell-associated xylanase with high activity on aryl-xylosides: a new subclass of family 10 xylanases. Appl. Microbiol. Biotechnol. 61: 226-233.   DOI   ScienceOn
15 Gupta N, Vohra RM, Hoondal GS. 1992. A thermostable extracellular xylanase from alkalophilic Bacillus sp. NG-27. Biotechnol. Lett. 14: 1045-1046.   DOI
16 Heo S, Kwak J, Oh H-W, Park D-S, Bae KS, Shin D-H, Park H-Y. 2006. Characterization of an extracellular xylanase in Paenibacillus sp. HY-8 isolated from an herbivorous longicorn beetle. J. Microbiol. Biotechnol. 16: 1753-1759.
17 Huang S, Sheng P, Zhang H. 2012. Isolation and identification of cellulolytic bacteria from the gut of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). Int. J. Mol. Sci. 13: 2563- 2577.   DOI   ScienceOn
18 Keskar SS, Srinivasan MC, Deshpande VV. 1989. Chemical modification of a xylanase from a thermotolerant Streptomyces: evidence for essential tryptophan and cysteine residues at the active site. Biochem. J. 261: 49-55.   DOI
19 Li N, Meng K, Wang Y, Shi P, Luo H, Bai Y, et al. 2008. Cloning, expression, and characterization of a new xylanase with broad temperature adaptability from Streptomyces sp. S9. Appl. Microbiol. Biotechnol. 80: 231-240.   DOI   ScienceOn
20 Kim DY, Han MK, Park D-S, Lee JS, Oh H-W, Shin D-H, et al. 2009. Novel GH10 xylanase, with a fibronectin type 3 domain, from Cellulosimicrobium sp. strain HY-13, a bacterium in the gut of Eisenia fetida. Appl. Environ. Microbiol. 75: 7275- 7279.   DOI   ScienceOn
21 Kim DY, Han MK, Oh H-W, Bae KS, Jeong T-S, Kim SU, et al. 2010. Novel intracellular GH10 xylanase from Cohnella laeviribosi HY-21: biocatalytic properties and alterations of substrate specificities by site-directed mutagenesis of Trp residues. Bioresour. Technol. 101: 8814-8821.   DOI   ScienceOn
22 Kim DY, Han MK, Oh H-W, Park D-S, Kim S-J, Lee S-G, et al. 2010. Catalytic properties of a GH10 endo-$\beta$-1,4-xylanase from Streptomyces thermocarboxydus HY-15 isolated from the gut of Eisenia fetida. J. Mol. Catal. B Enzym. 62: 32-39.   DOI   ScienceOn
23 Kim DY, Ham S-J, Kim HJ, Kim J, Lee M-H, Cho H-Y, et al. 2012. Novel modular endo-$\beta$-1,4-xylanase with transglycosylation activity from Cellulosimicrobium s p. s train HY-13 that i s homologous to inverting GH family 6 enzymes. Bioresour. Technol. 107: 25-32.   DOI   ScienceOn
24 Lombard V, Ramulu HG, Drula E, Coutinho PM, Henrissat B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. DOI: 10.1093/nar/gkt1178.
25 Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506-577.   DOI   ScienceOn
26 Mamo G, Hatti-Kaul R, Mattiasson B. 2006. A thermostable alkaline active endo-$\beta$-1,4-xylanase from Bacillus halodurans S7: purification and characterization. Enzyme Microb. Technol. 39: 1492-1498.   DOI   ScienceOn
27 MacLeod AM, Lindhorst T, Withers SG, Warren RAJ. 1994. The acid/base catalyst in the exoglucanase/xylanase from Cellulomonas fimi is glutamic acid 127: evidence from detailed kinetic studies of mutants. Biochemistry 33: 6371-6376.   DOI   ScienceOn
28 Oh H-W, Heo S-Y, Kim DY, Park D-S, Bae KS, Park H-Y. 2008. Biochemical characterization and sequence analysis of a xylanase produced by an exo-symbiotic bacterium of Gryllotalpa orientalis, Cellulosimicrobium sp. HY-12. Antonie van Leeuwenhoek 93: 437-442.   DOI   ScienceOn
29 Morrison M, Pope PB, Denman SE, McSweeney CS. 2009. Plant biomass degradation by gut microbiomes: more of the same or something new? Curr. Opin. Biotechnol. 20: 358-363.   DOI   ScienceOn
30 Shi H, Zhang Y, Huang Y, Wang L, Wang Y, Ding H, Wang F. 2013. A novel highly thermostable xylanase stimulated by $Ca^{2+}$ from Thermotoga thermarum: cloning, expression and characterization. Biotechnol. Biofuels 6: 26.   DOI   ScienceOn
31 Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS. 2005. Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577-591.   DOI   ScienceOn
32 Roberge M, Shareck F, Morosoli R, Kluepfel D, Dupont C. 1999. Characterization of active-site aromatic residues in xylanase A from Streptomyces lividans. Protein Eng. 12: 251-257.   DOI
33 Shi P, Tian J, Yuan T, Liu X, Huang H, Bai Y, et al. 2010. Paenibacillus sp. strain E18 bifunctional xylanase-glucanase with a single catalytic domain. Appl. Environ. Microbiol. 76: 3620-3624.   DOI   ScienceOn
34 Singh RK, Tiwari MK, Kim D, Kang YC, Ramachandran P, Lee J-K. 2013. Molecular cloning and characterization of a GH11 endoxylanase from Chaetomium globosum, and its use in enzymatic pretreatment of biomass. Appl. Microbiol. Biotechnol. 97: 7205-7214.   DOI   ScienceOn
35 Usui K, Suzuki T, Akisaka T, Kawai K. 2003. A cytoplasmic xylanase (XynX) of Aeromonas caviae ME-1 is released from the cytoplasm to the periplasm by osmotic downshock. J. Biosci. Bioeng. 95: 488-495.   DOI   ScienceOn
36 Wackett LP. 2008. Biomass to fuels via microbial transformations. Curr. Opin. Chem. Biol. 12: 187-193.   DOI   ScienceOn
37 Zolotnitsky G, Cogan U, Adir N, Solomon V, Shoham G, Shoham Y. 2004. Mapping glycoside hydrolase substrate subsites by isothermal titration calorimetry. Proc. Natl. Acad. Sci. USA 101: 11275-11280.   DOI   ScienceOn
38 Yan Q, Hao S, Jiang Z, Chen W. 2009. Properties of a xylanase from Streptomyces matensis being suitable for xylooligosaccharides production. J. Mol. Catal. B Enzym. 58: 72-77.   DOI   ScienceOn
39 Zhou J, Huang H, Meng K, Shi P, Wang Y, Luo H, et al. 2009. Molecular and biochemical characterization of a novel xylanase from the symbiotic Sphingobacterium sp. TN19. Appl. Microbiol. Biotechnol. 85: 323-333.   DOI   ScienceOn