• 제목/요약/키워드: elliptic-integrals

검색결과 19건 처리시간 0.169초

Elliptic Integral Solutions of Large Deflection of Reinforcing Fiber Elastica with Circular Wavy Pattern

  • Jung, Jae-Ho;Lee, Kyung-Woo;Kang, Tae-Jin
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.163-169
    • /
    • 2001
  • The solution of two-dimensional deflection of circular wavy reinforcing fiber elastics was obtained for one end clamped boundary under concentrated load condition. The fiber was regarded as a linear elastic material. Wavy shape was described as a combination of half-circular arc smoothly connected each other with constant curvature of all the same magnitude and alternative sign. Also load direction was taken into account. As a result, the solution was expressed in terms of a series of elliptic integrals. These elliptic integrals had two different transformed parameters involved with load value and initial radius of curvature. While we found the exact solutions and expressed them in terms of elliptic integrals, the recursive ignition formulae about the displacement and arc length at each segment of circular section were obtained. Algorithm of determining unknown parameters was established and the profile curve of deflected beam was shown in comparison with initial shape.

  • PDF

THE HP-VERSION OF THE FINITE ELEMENT METHOD UNDER NUMERICAL QUADRATURE RULES

  • Kim, Ik-Sung
    • East Asian mathematical journal
    • /
    • 제14권1호
    • /
    • pp.63-76
    • /
    • 1998
  • we consider the hp-version to solve non-constant coefficients elliptic equations $-div(a{\nabla}u)=f$ with Dirichlet boundary conditions on a bounded polygonal domain $\Omega$ in $R^2$. In [6], M. Suri obtained an optimal error-estimate for the hp-version: ${\parallel}u-u^h_p{\parallel}_{1,\Omega}{\leq}Cp^{(\sigma-1)}h^{min(p,\sigma-1)}{\parallel}u{\parallel}_{\sigma,\Omega}$. This optimal result follows under the assumption that all integrations are performed exactly. In practice, the integrals are seldom computed exactly. The numerical quadrature rule scheme is needed to compute the integrals in the variational formulation of the discrete problem. In this paper we consider a family $G_p=\{I_m\}$ of numerical quadrature rules satisfying certain properties, which can be used for calculating the integrals. Under the numerical quadrature rules we will give the variational form of our non-constant coefficients elliptic problem and derive an error estimate of ${\parallel}u-\tilde{u}^h_p{\parallel}_{1,\Omega}$.

  • PDF

TURÁN-TYPE INEQUALITIES FOR GAUSS AND CONFLUENT HYPERGEOMETRIC FUNCTIONS VIA CAUCHY-BUNYAKOVSKY-SCHWARZ INEQUALITY

  • Bhandari, Piyush Kumar;Bissu, Sushil Kumar
    • 대한수학회논문집
    • /
    • 제33권4호
    • /
    • pp.1285-1301
    • /
    • 2018
  • This paper is devoted to the study of $Tur{\acute{a}}n$-type inequalities for some well-known special functions such as Gauss hypergeometric functions, generalized complete elliptic integrals and confluent hypergeometric functions which are derived by using a new form of the Cauchy-Bunyakovsky-Schwarz inequality. We also apply these inequalities for some sample of interest such as incomplete beta function, incomplete gamma function, elliptic integrals and modified Bessel functions to obtain their corresponding $Tur{\acute{a}}n$-type inequalities.

ERROR ANALYSIS OF THE hp-VERSION UNDER NUMERICAL INTEGRATIONS FOR NON-CONSTANT COEFFICIENTS

  • KIM, IK-SUNG
    • 호남수학학술지
    • /
    • 제27권2호
    • /
    • pp.317-332
    • /
    • 2005
  • In this paper we consider the hp-version to solve non-constant coefficients elliptic equations on a bounded, convex polygonal domain ${\Omega}$ in $R^2$. A family $G_p=\{I_m\}$ of numerical quadrature rules satisfying certain properties can be used for calculating the integrals. When the numerical quadrature rules $I_m{\in}G_p$ are used for computing the integrals in the stiffness matrix of the variational form we will give its variational form and derive an error estimate of ${\parallel}u-{\widetilde{u}}^h_p{\parallel}_{1,{\Omega}$.

  • PDF

타원곡선의 역사 개관 (A Historical Overview of Elliptic Curves)

  • 고영미;이상욱
    • 한국수학사학회지
    • /
    • 제28권2호
    • /
    • pp.85-102
    • /
    • 2015
  • Elliptic curves are a common theme among various fields of mathematics, such as number theory, algebraic geometry, complex analysis, cryptography, and mathematical physics. In the history of elliptic curves, we can find number theoretic problems on the one hand, and complex function theoretic ones on the other. The elliptic curve theory is a synthesis of those two indeed. As an overview of the history of elliptic curves, we survey the Diophantine equations of 3rd degree and the congruent number problem as some of number theoretic trails of elliptic curves. We discuss elliptic integrals and elliptic functions, from which we get a glimpse of idea where the name 'elliptic curve' came from. We explain how the solution of Diophantine equations of 3rd degree and elliptic functions are related. Finally we outline the BSD conjecture, one of the 7 millennium problems proposed by the Clay Math Institute, as an important problem concerning elliptic curves.

Extensible Elastica Solutions on the Large Deflection of Fiber Cantilever with Circular Wavy Crimp (I) - Derivation of Models and Their Solutions-

  • Jung Jae Ho;Kang Tae Jin
    • Fibers and Polymers
    • /
    • 제6권1호
    • /
    • pp.55-65
    • /
    • 2005
  • Extensible elastica solutions of two-dimensional deflection of crimped fiber cantilever of circular wavy crimp were obtained for one end clamped boundary under concentrated, inclined and dead tip load Fiber was also regarded as a linear elastic material. Crimp was described as a combination of semicircular arcs smoothly connected with each other having con­stant curvature of all the same magnitude and alternative sign. Also the inclined load direction was taken into account. The solutions were expressed as the recursive forms of integrals in two different cases, which can also be transformed to elliptic integrals respectively. Comparing the data with inextensible ones was carried out. Consequently in the solution, the normal strain of neutral axis is expressed in terms of cross-sectional area, second moment of area and normalized load parameter. Examples of the circular cross-sectioned fiber are presented. As a result, the differences of normalized load between inexten­sible and extensible elastica solutions when the radius ratio becomes 0.1 were maximum $\Lambda$ = 0.1.

L2-NORM ERROR ANALYSIS OF THE HP-VERSION WITH NUMERICAL INTEGRATION

  • Kim, Ik-Sung
    • 대한수학회보
    • /
    • 제39권1호
    • /
    • pp.9-22
    • /
    • 2002
  • We consider the hp-version to solve non-constant coefficient elliptic equations with Dirichlet boundary conditions on a bounded, convex polygonal domain $\Omega$ in $R^{2}.$ To compute the integrals in the variational formulation of the discrete problem we need the numerical quadrature rule scheme. In this paler we consider a family $G_{p}= {I_{m}}$ of numerical quadrature rules satisfying certain properties. When the numerical quadrature rules $I_{m}{\in}G_{p}$ are used for calculating the integrals in the stiffness matrix of the variational form we will give its variational fore and derive an error estimate of ${\parallel}u-\tilde{u}^h_p{\parallel}_0,{\Omega}'$.

수중 유체저장용 막구조물 형상의 이론적 해석 (An Analytic Solution of the Shape of a Partially Filled, Submerged Membrane Container)

  • 최윤락
    • 한국해양공학회지
    • /
    • 제22권5호
    • /
    • pp.39-43
    • /
    • 2008
  • For a partially filled and deeply submersed membrane container, an analytic solution for similarity shape was studied. The static shape of a membrane container can be expressed as a set of nonlinear ordinary differential equations. These equations are combined into an integrable equation. The solution of the equation is derived in terms of elliptic integrals, the arguments of which contain an unknown at the point of inflection. The point of inflection is determined by using the boundary condition at a separating point. Some characteristic values of the similarity shape were evaluated and the shapes are illustrated.

Exact solutions of variable-arc-length elasticas under moment gradient

  • Chucheepsakul, Somchai;Thepphitak, Geeraphong;Wang, Chien Ming
    • Structural Engineering and Mechanics
    • /
    • 제5권5호
    • /
    • pp.529-539
    • /
    • 1997
  • This paper deals with the bending problem of a variable-are-length elastica under moment gradient. The variable are-length arises from the fact that one end of the elastica is hinged while the other end portion is allowed to slide on a frictionless support that is fixed at a given horizontal distance from the hinged end. Based on the elastica theory, exact closed-form solution in the form of elliptic integrals are derived. The bending results show that there exists a maximum or a critical moment for given moment gradient parameters; whereby if the applied moment is less than this critical value, two equilibrium configurations are possible. One of them is stable while the other is unstable because a small disturbance will lead to beam motion.

경사면에 놓인 유체 저장용 막구조물 형상의 이론적 해석 (An Analytic Solution of the Shape of an Inclined, Partially Filled Membrane Container)

  • 최윤락
    • 한국해양공학회지
    • /
    • 제21권1호
    • /
    • pp.45-50
    • /
    • 2007
  • For a long partially-filled membrane container on an incline, the analytic solution of the similarity shape is studied. The nonlinear equation is solved and its solution is expressed as elliptic integrals, which include an unknown at the point of inflection. The point of inflection is determined by using the boundary condition at the upper separating point. Some characteristic values of the universal shape are evaluated, as the functions of inclination angle and shapes are illustrated for some cases.