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ERROR ANALYSIS OF THE hp—VERSION UNDER
NUMERICAL INTEGRATIONS FOR NON-CONSTANT
COEFFICIENTS

Ik-SunG KM

Abstract. In this paper we consider the Ap—version to solve non-
constant coefficients elliptic equations on a bounded, convex polyg-
onal domain © in R®. A family G, = {Im} of numerical quadrature
rules satisfying certain properties can be used for calculating the in-
tegrals. When the numerical quadrature rules I, € G, are used
for computing the integrals in the stiffness matrix of the variational
form we will give its variational form and derive an error estimate

of llu — @hll, o

1. Introduction

Let  be a bounded, convex polygonal domain in R? with the bound-
ary I'. To solve non-constant coefficients elliptic equations with Dirichlet
boundary conditions on Q we consider the hp—version with a quasi-
uniform mesh and uniform p. Let M = {J"}, h 2 0 be a quasi-uniform,
regular family of meshes J" = {Q2} defined on Q, where QF is a closed

quadrilateral, and

(1.1) max diam(Q") =h for all Q" J" € M.
Qhejh
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Further we assume that for each QZ € J" there exists an invertible

mapping T,? c Q- QZ with the following correspondence:

(1.2) F€Q e a=THE) e QL
and
(1.3) TeU,@) — t=To (T " e U,
where € denotes the reference elements 12 = [-1,1)? in R2,
Up(©)
Ly T .
= {t : tis a polynomial of degree < pin each variable onQ},
and
(1.5) Up() = {t : T=to TP e U,() }.

We now consider the following model problem of non-constants ellip-
tic equations :
Find u € H}(Q), such that

(1.6) —div(aVu) = f in QC R?

where two functions a and f satisfy a compatibility condition to en-

sure a solution exists, and
(L.7) Hj(9) = {u € H(Q) : u vanishes on T}.
For the sake of simplicity, we assume that

(1.8) 0<AiZa(z) S Ay forall z€Q,and

(1.9) f € La().

In addition, we also assume that there exists a constant M > 1 such
that

-1
(110) [Tl 1T

<A for 0EmSM,

”m,oo,Q;ct =
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-1
(11D 1 lpeg 1) lmeoqs SA for 0Sm< M1,

where j;’; and (:f;’:)—l denote the Jacobians of T} and (T,?)_1 respec-
tively.

Then, as seen in [8, Theorem 3.1.2], we obtain the following corre-
spondence:
For any a € [1,00], 0 S m £ M,

-1

(1.12) Te W () —t =10 (TH) " € W™(Q})

with norm equivalence
(113) G Dt qar S [l 0q S Coh™ @ [t 0
with the subscript o omitted when a = 2. Namely, we have
(1.14) CyRm=D) (121l or = ||/]|mg < Cyh(™™ 1)“t”m Qb
Let us define
(1.15)  Sp(Q) = {u€ H(Q) : ugy o (T}) € Up(Q) for all O} € 7"}
where Ugh denotes the restriction of u € H(Q) to QF € J", and
(1.16) Sho(Q) = SHQ) N H(Q).

Then, using the hp—version of the finite element method with the
mesh J* = {Q}'} we obtain the following discrete variational form of
(1.6): Find up € 53,0(9) satisfying

(1.17) B(ug,v;}) = (f, v;,‘)Q for all vz},’ € S’;}’O(Q),
where
(1.18) B(u,v) = / aVu - Vudz,
Q

the usual inner product

(1.19) (f,v)Qz/vad:c.
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In [6], L. Babuska and M. Suri already obtained the following optimal
estimate for the hp—version: For any u € HJ()(o 2 1) we have

(1.20) lu = ubll, o < Cp~ @ VRTE D ) o,

where C is independent of u, h, and p [but depends on {2 and oal.

The above optimal result follows under the assumption that all inte-
grations are performed exactly. In practice, to compute the integrals in
the variational formulation of the discrete problem we need the numeri-
cal quadrature rule scheme. The integrals are seldom computed exactly.
In this paper we consider a family G, = {Im} of numerical quadrature
rules satisfying certain properties, which can be used for calculating the
integrals in the stiffness matrix of (1.17). Under the numerical quadra-
ture rules we will give its variational form and derive an error estimate

of |ju— ﬂ;}HLQ where u"

» is an approximation satisfying (2.6).

Let us now give some approximation results which will be used later.

Lemma 1.1. For each integer ! > 0, there exists a sequence of pro-
jections
Hé : HY(Q) — Up(ﬁ), p=1,2,3, - such that

(1.21) 5, = 3, forall € Up(Q),

122 la-mal <C p @), 5 forall e H(Q)
0Ss<ISr

Proof. See [9, Lemma 3.1].
Lemma 1.2. Let & € Hr(fl) with r 2 2. Then the projection 1'[,2,

from Lemma 1.1 satisfies

(1.23) o~ 12, 5 < Cp "Vl -
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Proof. By interpolation results (see [9, Theorem 3.2 | and (7, Theo-
rem 6.2.4 ]) we have that for 0 <¢ £ %,

2~ 2~ 2~

(29 Ja-TBal,, 4 S Cla-1Ca)}, - el
We also have from Lemma 1.1 that

(1.25) |z — H2 I i = < cpt) |gll,gfor0 S r£25s.

Hence, taking r = 1 +¢ and r = 1 — € in (1.25) we obtain

(1.26) [z~ Hza|| glle — H2u|I2 5 SCp V|l g,

1+e,Q

which completes the proof from (1.24).

Lemma 1.3. Suppose that T,? 0 — QZ is an invertible affine
mapping. Then for any u € H°(2),0 2 0 we have

(1.27) inf ||th - vH a < Ch““thH .
ve p( ) Qk
where g = min(p,o — 1) and C is independent of h, p and u.

Proof. The proof is given in [6].

Lemma 1.4. For each u € H°(Q) and Qf € J" there exists a se-
quence z;} € Up(),p=1,2,--- such that forany 0Sr <o

(1.28) Jlugy — 2| a < cplrrp —<U-T>||u92||m% for all QF € 7",

where 1 = min(p,o — 1) and C is independent of A, p and .

Proof. See [6, Lemma 4.5].
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2. hp—version under numerical quadrature rules

We consider numerical quadrature rules I,,, defined on the reference

element by
n(m)

(2.1) Inf) = 3 o FEr) ~ /ﬁf(f) a3,
1=1

where m is a positive integer. Let G, = {I,} be a family of quadrature
rules I, with respect to Up(ﬁ), p=1,2,3, -, satisfying the following
properties : For each I, € Gp,
(K1) @™ > 0 and 77" EQforz—l (
(K2) 1) £ CHlig for all Fe Uy(D).
(K3) Cal fllos < (") for all F € Tp(®)
where U (ﬁ) 6A . fe Up( Q) Y} cy, A).
(K4) In(f) = fQ dac forall f € Ug(m (Q)
where d(m )=d( ) > 0.
We also get a family Gp0 = {Imn} of numerical quadrature rules
with respect to S;}(Q), defined by

n(m) n(m)
Im,ng(fQ;;) = Z w;'cfng(w}n) = @Tﬁ(@n)(fgg OTél)(E;'n)
(2.2) j=1 =1
= Im(jlfcl J?Qf;)
and
(2.3) Ino(f) = Y Inan(fap).
Qhegh

In particular, one may be interested in Gauss-Legendre(G-L) quadra-
ture rules. Let Ly denote the cross-products of g—point G-L rules along

the 71 and T axes on {) = I x I, given by

q q
H =33 afa? f(@%)for allf € Ly(Q),

i=1 j=1
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where T, = (3},7]) € Q = T x I with the weights @7 and @]
We consider a family {Lq}q>1( ») of G-L quadrature rules with respect
to Up(€) such that I(p) = p+ 1. Then, {Lg} 5, satisfy the properties
(K1) — (K4). In fact, wheng 2 p+1 L (f) is exact for all f € Ug( )(Q)

with d(q) = 2p+ 1 > 0, so that (K2) and (K3) hold with C; = Cy = 1.

Here, one may employ numerical quadrature rules schemes for com-
puting the integrals in the discrete variational form (1.17). Especially,
since the model problem (1.6) is a non-constant coefficients elliptic prob-
lem the numerical quadrature rules I, € G can be used for calculating
the integrals in the stiffness matrix. Thus, we denote by DF the 2 x 2

Jacobian matrix of F': R?2 — R?, and define two discrete inner products

(24) 00y = Tmap (@) = In(TE@)g) on 9 € T,
(2.5) (wv),q = Z (u,v)mygﬁ on .
Qhegh

Then, under the assumption that all integrations in the load vector of
(1.17) are performed exactly, using the quadrature rules I, € G, for
computing the integrals in the stiffness matrix of (1.17) we obtain the
following actual problem of (1.17):

Find 4} € Sg,O(Q), such that

(2.6) Bmg( ) (f,v p) for all vg € Sg,o(Q),
where
Bp(@,vh) = Ina(aViy - Vo)
Z Qh thV )Qh V( ) )
QhEJh
t —— t

> n(Rag |01 (V@) (0T (vEhmy))

Qregh
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——

b1 b — —
" 12) , then (aij)gp = JE (big)gp

Here, if we let (DT,?‘I) (DTh 1)
ba1  bo2
e —— ¢
are the entries of the matrix JP (DTh—l) (DTh_l) For the simplicity of
notation, if the restrictions th ) (a”)Qh , (u )Qh and (v )Qh are simply

denoted by @, a;; , up and vz’j respectively, then we have

B, Q(ah Ug)
—~ —t, T T b
= Y In(Rag(V@e) (DT ) (DTE) (V(h)y) )
Qregh
t h
= m = e~ — T
(27) Qhejh %%% a21 az2 g—;{%
aa;;
Qhen i1 Jawz BwJ m,Q
o 81}"
P
aa;
Q%hz?l( Y oz axj)

3. main results

2|

Let us now derive an estimate of the error |[u — 4y ||, (, for the hp— ver-

|

sion under numerical quadrature rules I,,. In fact, |[u — @ o, depends

on two separate terms. The first dependence is on the error |Ju — u?||
given in (1.20). Next, the error will depend upon the smoothness of a.

We will start with the following lemma.

Lemma 3.1. Let u be the exact solution of (1.6) and u;,‘ that of
(1.17). Let U;,‘ be an approximate solution of u which satisfies a discrete

variational form (2.6). Then there exists a constant C' independent of
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m such that

(3.1)
Ju -,
) |B(ul, wh) ’Q('Uh wh)|
<O it {lu-flg+ sp PR ImAtn )y
vhESp o T uhest @) lwpll g

Proof. Let v;,‘ be an arbitrary element in 5,'},0(9)- Then we have
~h h h _ ~h
(3:2) hu—l, g S lu= ol g+ lof — Tl g

From the ellipticity of Bn (-, ), for a constant C; > 0

h _ ~h2 h _=~h ,h
Cillvp _uPHI,Q < Bma(vp — Uy, v — )
(33) = IBm,Q('Ugva 0} ) f’ Ugf; )i
= |Bma(vh,of — @) — B(uf,v) —@})|.

Hence, taking the infimum with respect to v,',l € 5{,‘,0(9) we have

(3.4)
-2,
< - h lB(uz,vg - ﬁ;,‘) - Bmg(vh v;} - ﬁ;})]
sC in {”u—vp”lg—*— h__~h }
uheSk o(9) , lop — upl]

The proof is completed by taking w,’; = vz’,’ - 17;,‘ € Sg’o(ﬂ).
Lemma 3.2. Let u,, w, € Uy(Q) and § € Loo(Qt). Then, for all

v(},vgeU(Q) G eU(Q) with0<g<pandr=d(m)—p—q>0we

have
|35 B)g — 0% B
(3.5) < O {1800l = 92l al% - Rlloq

+ 117 = Grllg co.alEpllog uplloals

where C is independent of p,¢ and m.
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Proof. For any § € U,(Q) we have
(3.6)
| (0%, Up)g — (Upr Up) 3 |
< (@, Up)g — (Grlp, Up)g | + | (§8p: Up)g — (GrTp, Up), 3 |
+ [ (rlp, Up) s — (GUpr Up) i |-

Thank to (K4),

)

(37) (398, T)g — (Gul ), o = O for any vl € Uy({2), and
(G, ) — (G, W) = O for any v} € Uy(@).
Hence,

| (G Tp)g, — (G Tp) |
(3.8) < (G T — 02)g — (Gr0d, Ty — 125 |
+ (G — 92), g — (G Ty — 03), 5|
By the Schwarz inequality we obtain
| (G Tp — 02)g — (600, T — ¥R)g |
B9 < (GG - 05T - ) G~ R — )
< Ol llopol — Villoq 1T — valloq -

Also, from (K2) we have
G T = )~ G T~ ),
~ ~ 1

6@ - ), 5@ - L

(3.10)

~ ~ ~ ~ 1
Ol 00 6T — V8,5 — 1)2, (3 — v, T — 222,

S Cllgrlly oo allze — vallg allte — villg g -
Hence, combining (3.9) and (3.10) we have

(3.11) | (GrTep, Up)gy — (Grlip, Up) 3 |
< Cligrllg onllies — villg ol = v3lloq -
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-~

Similarly, since § € Lo (§2) we obtain

(@, Up)g — (Grip, Up)gy|

1 1
(3.12) < (@~ 5V G- 3)B)2 (@ 5)2
£C “§ - g;‘”(),oo,ﬁ“ﬁ;“()’ﬁﬂﬂ;“o,ﬁ s
and
(T ) e — (T8 Tl

[
S (g — iy, (9 — g)up);ﬁ(up’ “p)fn o

(3.13) N 1
< Cligr = llp,e0,0 up)fn,ﬁ(up’ Up):n’ﬁ

< Cllgr = Gllp oo allEpllopllEnllon -

The lemma follows from (3.11), (3.12), (3.13) and (3.6).

As seen in Lemma 3.1, the last dependence of |lu — ﬁglll q s on the

smoothness of a. In this connection, we let

(3.14) Mpq = e, max laai;l, 6

where the subscript g will be omitted when ¢ = 2. Then, we obtain
the following results which give an estimate for the last term of the right
side in (3.1).

Lemma 3.3. Let I,, € Gp be a quadrature rule defined on Qc R?,
which satisfies d(m) —p—1 > 0. Let v € H°(Q), a € H*(Q) and
ai; € H”(ﬁ) for 4,5 = 1,2, such that A = min(a, p) 2 2. Then, for any
w;; € S{,‘)O(Q) and an approximation ug which satisfies (1.17) we have
(3.15)

| B(up, wp) = Bm,a(up, wp) |

h
il

< C{(r M DMy + Moo)(llu = uplly o + a7V lull, o)

+r O UMy lull 0},



328 Ik-Sung Kim

where ¢ is a positive integer such that 0 < ¢ £ pand r = d(m)—p—q > 0.
Proof. For arbitrary w,’,l € 5,'},0(9) we have

(3.16)

| B(u)!,wh) — B, Q(uh wh)|

<o oah ook o} oa}
aTj}&“l?"' “a“aA’ax] s Mo 01‘] mﬁ"

For any @;; 4,5 =1,2 and QZ € J" we let g be any integer such that
0<qg<pandr=dm)—p-—gqg>0. Then since 'diiij € Loo(ﬁ),

~ 3} ~  Ollwh ~
due to Lemma 3.2 with 7 = % (Hluh) v2 = a;]p € Uy(2) and
g, = 12(aa;;), we have
(3.17)
Bug 6wh N 8u;} Bwh
l aa” - a’aij o~ ) I
oz; Bacj 8 0z; c'):vj 8
gub oM Owh  OMlwh
< H2 p q Ap _
< AUM@aE a5 ~ 35, 1 155, ~ a5, IIO,
oub  duh
-~ " H2 . p _p .
+ll@a; —I@ai)llg o0l 57 A on 5=~ 7, ||OQ}
Since aa;; € HMQ) with A = min(a, p) = 2 we obtain from Lemma
1.2 and (1.14) that
_ ouf  Ouwk
165 BT all 20, I
(3.18) _ —
< cr P Vjaagl, gz U"H +||u||1,§)||w2||1,§
< Cr DM (fu = ] g+l )l

1,00
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Further, it follows from Lemma 1.1, Lemma 1.2 and (1.14) that

| Buh 81'1;’\” awh 8H1
o002 oz, 0% ” 8:1:] 855] L

£C {H'daU - H2(aau)||0°o 0

”H2 (@ a,])

01

+ lla(ffjlimﬁ}lluh - gl ﬁ”wh Hl'wh”m
C{Haau (aazj)l|oooQ+MOoo}{l|u Uhllm

all H;ﬁﬂl’ﬁ}llw;‘ - H;w;;“Lﬁ

IA

(3.19)

A

C {r~ V@l g + Moo HlIE - ull, 5

+q V@), g Hiwkll g

<C {r_(’\_l)M,\ + Moo} {llu — “2“1,92

+ ¢ DRV ull, g ikl gr,

where C is independent of p and q.
Thus, substituting (3.18) and (3.19) in (3.17) we have

(3.20)
|B(u$,w;}) -Bmg(uh w;‘)|
oul ow} auh owh
< —
<0 ) m?"'(““”aA’ axj) ( %i g%, axj> |
QhGJ" 3 m,§
s

c Z {(r= DM\ + Mooo)(flu — “1’5”1,92
Qhegh

+¢ DRV ul, on)
+ O DMyl — uplly g + llully gu) Hlwpllz

< C{(r O DMy + Mooo)(lu = wpll, o + @~ VRE D ull,0)
+ =AMyl o Hlwplha -

The lemma, follows from dividing by ||w1’[,’||1 Q
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By a direct application of Lemma 3.3 and (1.20) to Lemma 3.1 we
obtain the following main theorem which gives an asymptotic, H*(Q)-
norm estimate for the rate of convergence under numerical quadrature

rules.

Theorem 3.4. Let I, € G, be a quadrature rule defined on Qc R?,
which satisfies ~ d(m) —p—1 > 0. We assume that u € H°(Q2),a €

~

H*(Q) and a;; € HP(Q) for 4,5 = 1,2 such that A = min(e,p) 2 2.
Then, for any positive integer q such that 0 < q £ p, we have
(3.21)
~h
Ju— 41,

< C{(r™ AU My + Moso)g O VRMJull,q + r~ A DMyl o}

where y = min(p,o — 1) and r = d(m) — p — q.

Proof. Taking vz’j € Sg,o(Q) with an approximation uz of u which

satisfies (1.17), we obtain from Lemma 3.1 that

~h
lu =l
( ) gc{”u’_uznlﬂ—*— sup | ( P p) m'Q( p P)I }

wheSh ,(Q) lwplly g

Since 0 < ¢ £ p it follows from (1.20) and Lemma 3.3 that the first

term of the right side in (3.22) is dominated by its last term. Hence, the
proof is completed by a direct application of Lemma 3.3 to (3.22).

We see from Theorem 3.4 that the rate of convergence is essentially

given by

(323 O((d(m) —p — q)—()\—l)q—(a—l)hmin(p,a-n
. 4 q_(g—l)hmin(p,a~1) + (d(m) —p - q)_()‘_l)).

If m is large enough with ¢ = p, then the rate of convergence is asymp-
totically O(p~(~DpmPe—1)) " which coincides with that of (1.20).

Further, when X is large enough (that is, a and a;; are sufficiently
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smooth), even when d(m) =~ 2p + 1 with ¢ = p the second term in
(3.23) may dominate, so that the rate of convergence is asymptoti-
cally O(p~(@=Dpmin(p.o=1)) " More precisely, in G-L quadrature rules,
using I, with (p + 1)-point rules we would obtain an asymptotic rate
O(p~ (e~ pmin(po—1)) But, when a and @;; are not smooth enough, the
second term ¢~ (¢~Dpmin(e.o—1) may he dominated by the other term of
(3.23). In this situation, using an overintegration with a sufficiently large
m we may reduce the error |ju — 172”1,9 until the second term dominates
again. In practice, when a and @;; are not smooth we may increase the

value of d(m) with ¢ = p.
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