• 제목/요약/키워드: electron impact

검색결과 345건 처리시간 0.025초

Influence of Ammonia Solvation on the Structural Stability of Ethylene Cluster Ions

  • Jung Kwang Woo;Choi Sung-Seen;Jung Kwang Woo;Hang Du-Jeon
    • Bulletin of the Korean Chemical Society
    • /
    • 제13권3호
    • /
    • pp.306-311
    • /
    • 1992
  • The stable structures of pure ethylene and mixed ethylene-ammonia cluster ions are studied using an electron impact ionization time-of-flight mass spectrometer. Investigations on the relative cluster ion distributions of $(C_2H_4)_n(NH_3)_m^+$ under various experimental conditions suggest that $(C_2H_4)_2(NH_3)_3^+$ and $(C_2H_4)_3(NH_3)_2^+$ ions have the enhanced structural stabilities, which give insight into the feasible structure of solvated ions. For the stable configurations of these ionic species, we report an experimental evidence that both $(C_2H4)_2^+(C_2H_4)_3^+$ clusters as the central cations provide three and two hydrogen-bonding sites, respectively, for the surrounding $NH_3$ molecules. This interpretation is based on the structural stability for ethylene clusters and the intracluster ion-molecular rearrangement of the complex ion under the presence of ammonia solvent molecules.

Screening of Nitrosamine Impurities in Sartan Pharmaceuticals by GC-MS/MS

  • Chang, Shu-Han;Ho, Hui-Yu;Zang, Chi-Zong;Hsu, Ya-Hui;Lin, Mei-Chih;Tseng, Su-Hsiang;Wang, Der-Yuan
    • Mass Spectrometry Letters
    • /
    • 제12권2호
    • /
    • pp.31-40
    • /
    • 2021
  • Probable human carcinogenic compounds nitrosamines, have been detected as by-product impurities in sartan pharmaceuticals in recent years which has drawn worries for medication safety. To provide a sensitive and effective method for the quality control of sartan pharmaceuticals, this study established a feasible gas chromatography-tandem mass spectrometry (GC-MS/MS) method for simultaneous determination of 13 nitrosamines. The target analytes were separated on a DB-WAX Ultra Inert column (30 m × 0.25 mm; i.d., 0.25 ㎛) and were then subjected to electron impact ionization in multiple reaction monitoring mode. The established method was validated and further employed to analyze authentic samples. Limits of detection (LODs) and limits of quantification (LOQs) of the 13 nitrosamines were 15-250 ng/g and 50-250 ng/g, respectively, which also exhibited intra-day and inter-day accuracies of 91.4-104.8%, thereby satisfying validation criteria. Five nitrosamines, viz., N-nitrosodiethylamine, N-nitrosodimethylamine, N-nitrosodiphenylamine, N-nitrosomorpholine, and N-nitrosopiperidine were detected at concentrations above their LODs in 68 positive samples out of 594 authentic samples from seven sartans.

Estimation of various amounts of kaolinite on concrete alkali-silica reactions using different machine learning methods

  • Aflatoonian, Moein;Mirhosseini, Ramin Tabatabaei
    • Structural Engineering and Mechanics
    • /
    • 제83권1호
    • /
    • pp.79-92
    • /
    • 2022
  • In this paper, the impact of a vernacular pozzolanic kaolinite mine on concrete alkali-silica reaction and strength has been evaluated. For making the samples, kaolinite powder with various levels has been used in the quality specification test of aggregates based on the ASTM C1260 standard in order to investigate the effect of kaolinite particles on reducing the reaction of the mortar bars. The compressive strength, X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM) experiments have been performed on concrete specimens. The obtained results show that addition of kaolinite powder to concrete will cause a pozzolanic reaction and decrease the permeability of concrete samples comparing to the reference concrete specimen. Further, various machine learning methods have been used to predict ASR-induced expansion per different amounts of kaolinite. In the process of modeling methods, optimal method is considered to have the lowest mean square error (MSE) simultaneous to having the highest correlation coefficient (R). Therefore, to evaluate the efficiency of the proposed model, the results of the support vector machine (SVM) method were compared with the decision tree method, regression analysis and neural network algorithm. The results of comparison of forecasting tools showed that support vector machines have outperformed the results of other methods. Therefore, the support vector machine method can be mentioned as an effective approach to predict ASR-induced expansion.

Characterization of Anodized Al 1050 with Electrochemically Deposited Cu, Ni and Cu/Ni and Their Behavior in a Model Corrosive Medium

  • Girginov, Christian;Kozhukharov, Stephan;Tsanev, Alexander;Dishliev, Angel
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권2호
    • /
    • pp.188-203
    • /
    • 2021
  • The specific benefits of the modified films formed on preliminary anodized aluminum, including the versatility of their potential applications impose the need for evaluation of the exploitation reliability of these films. In this aspect, the durability of Cu and Ni modified anodized aluminum oxide (AAO) films on the low-doped AA1050 alloy was assessed through extended exposure to a 3.5% NaCl model corrosive medium. The electrochemical measurements by means of electrochemical impedance spectroscopy (EIS) and potentiodynamic scanning (PDS) after 24 and 720 hours of exposure have revealed that the obtained films do not change their obvious barrier properties. In addition, supplemental analyses of the coatings were performed, in order to elucidate the impact of the AC-deposition of Cu and Ni inside the pores. The scanning electron microscopy (SEM) images have shown that the surface topology is not affected and resembles the typical surface of an etched metal. The subsequent energy dispersive X-ray spectroscopy (EDX) tests have revealed a predominance of Cu in the combined AAO-Cu/Ni layers, whereas additional X-ray photoelectron (XPS) analyses showed that both metals form oxides with different oxidation states due to alterations in the deposition conditions, promoted by the application of AC-polarization of the samples.

Effects of pH and Chloride Concentration on Corrosion Behavior of Duplex Stainless Steel and Titanium Alloys Ti 6Al 2Nb 1Ta 1Mo at Elevated Temperature for Pump Impeller Applications

  • Aymen A., Ahmed;Ammar Yaseen, Burjes;Ammar Yaseen, Burjes
    • Corrosion Science and Technology
    • /
    • 제21권6호
    • /
    • pp.454-465
    • /
    • 2022
  • The objective of this study was to determine effects of temperatures and pH of sodium chloride solution with MgCl2 ions on corrosion resistance of duplex stainless-steel X2CrNiMoN22-5-3 (DSS) and Ti 6Al 2Nb1Ta1Mo (Ti). Effects of sodium chloride concentration on corrosion resistance were also studied. Corrosion behavior and pitting morphology of duplex stainless steel (DSS) and Ti alloys were evaluated through potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). It was found that a decrease in pH significantly reduced the corrosion resistance of both alloys. Changes in chloride concentration and temperature had more substantial impact on corrosion behavior of DSS than on Ti alloys. Pitting corrosion was formed on DSS samples under all conditions, whereas crevice corrosion was developed on Ti samples with the presence of magnesium chloride at 90 ℃. In conclusion, magnesium chloride ions in an exceedingly strong acidity solution appear to interact with re-passivation process at the surface of these alloys and influence the resulting surface topography.

The influence of L-arginine as an additive on the compressive strength and hydration reaction of Portland cement

  • Yildiz, Mine Kurtay;Gerengi, Husnu;Kocak, Yilmaz
    • Computers and Concrete
    • /
    • 제29권4호
    • /
    • pp.237-246
    • /
    • 2022
  • The concrete quality relies on general factors like preparation technique, uniformity of the compaction, amount and appropriateness of the additives. The current article investigates the impact of a well knows amino acid, L-arginine as an additive on water requirements, setting durations and characterization of various cement samples. Compressive strength tests of reference and L-arginine added cements at age of 2, 7 and 28 days were carried out according to TS-EN 196-1. Samples were blended by incorporating various amounts of L-arginine (25 ppm, 50 ppm and 75 ppm) in the cement water mixture which were tested with Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermo-gravimetric analysis (TG), scanning electron microscopy (SEM) and the energy-dispersive X-ray spectroscopy (EDS) on the 28th day. Results revealed that L-arginine does not affect the setting time, volume expansion of cement and water demands negatively; rather it imparts enhanced sustainability to the samples. It was determined that the highest value belonged to the 75L mortar with an increase of 2.6% compared to the reference sample when the compressive strengths of all mortars were compared on the 28th day. Besides, it has been observed that the development of calcium silicate hydrate or C-S-H gel, calcium hydroxide or CH and other hydrated products are associated with each other. L-arginine definitely has a contribution in the consumption of CH formed in the hydration process.

Changes in bound water and microstructure during consolidation creep of Guilin red clay

  • Zhang, Dajin;Xiao, Guiyuan;Yin, Le;Xu, Guangli;Wang, Jian
    • Geomechanics and Engineering
    • /
    • 제30권5호
    • /
    • pp.471-478
    • /
    • 2022
  • Creep of soils has a significant impact on mechanical properties. The one-dimensional consolidation creep test, thermal analysis test, scanning electron microscope (SEM) test, and mercury compression test were performed on Guilin red clay to study the changes in bound water and microstructure during the creep process of Guilin red clay. According to the results of the tests, only free and weakly bound water is discharged during the creep of Guilin red clay. When the consolidation pressure p is in the 12.5-400.0 kPa range, it is primarily the discharge of free water; when the consolidation pressure p is in the 800.0-1600.0 kPa range, the weakly bound water is converted to free water and discharged. After consolidation creep, the microstructure of soil changes from granular overhead contact structure to flat sheet-like stacking structure, with a decrease in the number of large and medium pores, an increase in the number of small and micro pores, and a decrease in the fractal dimension of pores. The creep process of red clay is the discharge of weakly bound water as well as the compression of large pores into small pores and the transition of soil particles from loose to dense.

Electrochemical Corrosion Behavior of Iron in Lithium-ion Battery Electrolyte

  • Kim, Jineun;Lee, Suhyun;Kim, Kun Woo;Son, Jungman;Mun, Junyoung
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권4호
    • /
    • pp.424-430
    • /
    • 2021
  • The element iron (Fe) is affordable and abundantly available, and thus, it finds use in a wide range of applications. As regards its application in rechargeable lithium-ion batteries (LIBs), the electrochemical reactions of Fe must be clearly understood during battery charging and discharging with the LIB electrolyte. In this study, we conducted systematic electrochemical analyses under various voltage conditions to determine the voltage at which Fe corrosion begins in general lithium salts and organic solvents used in LIBs. During cyclic voltammetry (CV) experiments, we observed a large corrosion current above 4.0 V (vs. Li/Li+). When a constant voltage of 3.7 V (vs. Li/Li+), was applied, the current did not increase significantly at the beginning, similar to the CV scenario; on the other hand, at a voltage of 3.8 V (vs. Li/Li+), the current increased rapidly. The impact of this difference was visually confirmed via scanning electron microscopy and optical microscopy. Our X-ray photoelectron spectroscopy measurements showed that at 3.7 V, a thick organic solid electrolyte interphase (SEI) was formed atop a thin fluoride SEI, which means that at ≥3.8 V, the SEI cannot prevent Fe corrosion. This result confirms that Fe corrosion begins at 3.7 V, beyond which Fe is easily corrodible.

동 테르밋 용접 특성 향상을 위한 폐 산화동 분말 입도 제어 연구 (Controlling Particle Size of Recycled Copper Oxide Powder for Copper Thermite Welding Characteristics)

  • 이한성;김민수;안병민
    • 한국분말재료학회지
    • /
    • 제30권4호
    • /
    • pp.332-338
    • /
    • 2023
  • Thermite welding is an exceptional process that does not require additional energy supplies, resulting in welded joints that exhibit mechanical properties and conductivity equivalent to those of the parent materials. The global adoption of thermite welding is growing across various industries. However, in Korea, limited research is being conducted on the core technology of thermite welding. Currently, domestic production of thermite powder in Korea involves recycling copper oxide (CuO). Unfortunately, controlling the particle size of waste CuO poses challenges, leading to the unwanted formation of pores and cracks during thermite welding. In this study, we investigate the influence of powder particle size on thermite welding in the production of Cu-thermite powder using waste CuO. We conduct the ball milling process for 0.5-24 h using recycled CuO. The evolution of the powder shape and size is analyzed using particle size analysis and scanning electron microscopy (SEM). Furthermore, we examine the thermal reaction characteristics through differential scanning calorimetry. Additionally, the microstructures of the welded samples are observed using optical microscopy and SEM to evaluate the impact of powder particle size on weldability. Lastly, hardness measurements are performed to assess the strengths of the welded materials.

The LaserFIB: new application opportunities combining a high-performance FIB-SEM with femtosecond laser processing in an integrated second chamber

  • Ben Tordoff;Cheryl Hartfield;Andrew J. Holwell;Stephan Hiller;Marcus Kaestner;Stephen Kelly;Jaehan Lee;Sascha Muller;Fabian Perez-Willard;Tobias Volkenandt;Robin White;Thomas Rodgers
    • Applied Microscopy
    • /
    • 제50권
    • /
    • pp.24.1-24.11
    • /
    • 2020
  • The development of the femtosecond laser (fs laser) with its ability to provide extremely rapid athermal ablation of materials has initiated a renaissance in materials science. Sample milling rates for the fs laser are orders of magnitude greater than that of traditional focused ion beam (FIB) sources currently used. In combination with minimal surface post-processing requirements, this technology is proving to be a game changer for materials research. The development of a femtosecond laser attached to a focused ion beam scanning electron microscope (LaserFIB) enables numerous new capabilities, including access to deeply buried structures as well as the production of extremely large trenches, cross sections, pillars and TEM H-bars, all while preserving microstructure and avoiding or reducing FIB polishing. Several high impact applications are now possible due to this technology in the fields of crystallography, electronics, mechanical engineering, battery research and materials sample preparation. This review article summarizes the current opportunities for this new technology focusing on the materials science megatrends of engineering materials, energy materials and electronics.