Browse > Article
http://dx.doi.org/10.33961/jecst.2020.01235

Characterization of Anodized Al 1050 with Electrochemically Deposited Cu, Ni and Cu/Ni and Their Behavior in a Model Corrosive Medium  

Girginov, Christian (Department of Physical Chemistry, University of Chemical Technology and Metallurgy)
Kozhukharov, Stephan (Laboratory for Advanced Materials Research, University of Chemical Technology and Metallurgy)
Tsanev, Alexander (Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences)
Dishliev, Angel (Department of Mathematics, University of Chemical Technology and Metallurgy)
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.2, 2021 , pp. 188-203 More about this Journal
Abstract
The specific benefits of the modified films formed on preliminary anodized aluminum, including the versatility of their potential applications impose the need for evaluation of the exploitation reliability of these films. In this aspect, the durability of Cu and Ni modified anodized aluminum oxide (AAO) films on the low-doped AA1050 alloy was assessed through extended exposure to a 3.5% NaCl model corrosive medium. The electrochemical measurements by means of electrochemical impedance spectroscopy (EIS) and potentiodynamic scanning (PDS) after 24 and 720 hours of exposure have revealed that the obtained films do not change their obvious barrier properties. In addition, supplemental analyses of the coatings were performed, in order to elucidate the impact of the AC-deposition of Cu and Ni inside the pores. The scanning electron microscopy (SEM) images have shown that the surface topology is not affected and resembles the typical surface of an etched metal. The subsequent energy dispersive X-ray spectroscopy (EDX) tests have revealed a predominance of Cu in the combined AAO-Cu/Ni layers, whereas additional X-ray photoelectron (XPS) analyses showed that both metals form oxides with different oxidation states due to alterations in the deposition conditions, promoted by the application of AC-polarization of the samples.
Keywords
AA1050; Anodization; AC-Electrochemical Deposition; Copper; Nickel;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y-G. Guo, Li-Jun Wan, J-R. Gong, C-L. Bai, Phys. Chem. Chem. Phys., 2002, 4(14), 3422-3424.   DOI
2 S. V. Kozhukharov, Ch. Girginov, J. Electrochem. Sci. Eng., 2018, 8(2), 113-127.
3 P. Ramana Reddy, K. M. Ajith, N. K. Udayashankar, Ceram. Int., 2016, 42(15), 17806-17813.   DOI
4 S. Rossi, M. Bizzotto, F. Deflorian, M. Fedel, Surf. Interface Anal., 2019, 51, 1194-1206.   DOI
5 W. Zhang, W. Li, L. Zhang, S. Yao, Acta Physico-Chimica Sinica, 2006, 22(8), 977-980.   DOI
6 S. Zhao, S. Guo, C. Zhu, J. Gao, H. Li, H. Huang, Y. Liu, Z. Kang, RSC Advances, 2017, 7(3), 1376-1381.   DOI
7 X.-J. Zhang, S.-W. Wang, G.-S. Wang, Z. Li, A.-P. Guo, J.-Q. Zhu, D.-P. Liu, P.-G. Yin, RSC Advances, 2017, 7(36), 22454-22460.   DOI
8 X. Du, Y. Yang, C. Yi, Y. Chen, C. Cai, Z. Zhang, J. Nanosci. Nanotechnol., 2018, 18(7)865-4875.   DOI
9 X. Liu, B. Shen, P. Yuan, D. Patel, C. Wu, Energy Procedia, 2017, 142, 525-530.   DOI
10 D. H. Kim, J. H. Kim, Y. S. Jang, J. C. Kim, Int. J Hydrog. Energy, 2019, 44(20), 9873-9882.   DOI
11 E.L. Reddy, H. C. Lee, D. H. Kim, Int. J. Hydrog. Energy, 2015, 40(6), 2509-2517.   DOI
12 X. Liu, H. Sun, C. Wu, D. Patel, J. Huang, Energy Fuels, 2018, 32(4), 4511-4520.   DOI
13 J. Karuppiah, E. L. Reddy, Y. S. Mok, Catalysts, 2016, 6(10), 154.   DOI
14 H-M. Zhang, Y-G. Guo, L-J. Wan, C-L. Bai, Chem. Commun., 2003, 24, 3022-3023.   DOI
15 J. H. Kim, Y. S. Jang, J. C. Kim, D. H. Kim, Korean J. Chem. Eng., 2019, 36(6), 368-376.   DOI
16 P. Sivakumar, P. Subramanian, T. Maiyalagan, A. Gedanken, A. Schechter, Mat. Chem. Phys., 2019, 229, 90-196.
17 X. Gao, Y. Wang, W. Li, F. Li, H. Arandiyan, H. Sun, Y. Chen, Electrochim. Acta, 2018, 283 1277-1283.   DOI
18 L. Duan, H. Liu, H. Wu, D. Yu, L. Huang, J. Porous Mater., 2019, 26(3), 855-860.   DOI
19 B. Priet, G. Odemer, V. Blanc, K. Giffard, L. Arurault, Surf. Coat. Technol., 2016, 307, 206-219.   DOI
20 T. Kikuchi, O. Nishinaga, S. Natsui, R. O. Suzuki, Electrochim. Acta, 2015, 156, 235-243.   DOI
21 E. L. Reddy, J. Karuppiah, H. C. Lee, D. H. Kim, J. Power Sources, 2014, 268, 88-95.   DOI
22 H-H. Shih, Y-C. Huang, J. Mater. Process. Technol., 2008, 208(1-3), 24-28.   DOI
23 K. Giffard, L. Arurault, Ch. Blanc, D. Di Caprio, Surf. Interface Anal., 2018, 51(12), 1184-1193.   DOI
24 I. Belca, B. Kasalica, Lj. Zekovic, B. Jovanic, R. Vasilic, Electrochim. Acta, 1999, 45(6), 993-996.   DOI
25 K. Chernyakova, B. Tzaneva, I. Vrublevsky, V. Videkov, J. Electrochem. Soc., 2020, 167(10), 103506.   DOI
26 G. Pastore, S. Montes, M. Paez, J. H. Zagal, Thin Solid Films., 1989, 173(2), 299-308.   DOI
27 M. J. L. Kishore, D. H. Kim, J. Catalysts and Catalysis, 2014, 1(1), 23-28.
28 B. Zhu, C. Zanella, Mater. Design, 2019, 173, 107764.   DOI
29 M. Michalska-Domanska, W. J. Stepniowski, L. R. Jaroszewicz, J. Porous Mater., 2017, 24(3) 779-786.   DOI
30 B.R. Strohmeier, Surf. Interface Anal., 1990, 15(1), 51-56.   DOI
31 M. A. Iqbal, L. Sun, H. Asghar, M. Fedel, Coatings, 2020, 10(4), 384.   DOI
32 M. A. Iqbal, L. Sun, A. T. Barrett, M. Fedel, Coatings, 2020, 10(4), 428.   DOI
33 Ch. Girginov, S. Kozhukharov, M. Milanes, M. Machkova, Mater. Chem. Phys., 2017, 198, 137-144.
34 K. Ignatova, S. Kozhukharov, M. Alakushev, Mater. Chem. Phys., 2018, 219, 175-181.   DOI
35 S. V. Kozhukharov, C. A. Girginov, Phenomena and Theories in Corrosion Science. Methods of Prevention., 2019.
36 Ch. Girginov, S. Kozhukharov, D. Kiradzhiyska, R. Mancheva, Electrochim. Acta, 2018, 292, 614-627.   DOI
37 S. Kozhukharov, Ch. Girginov, A. Tsanev, M. Petrova, J. Electrochem. Soc., 2019, 166(10), C231.   DOI
38 B. A. Boukamp, Solid State Ion., 1986, 18, 136-140.   DOI
39 E. J. W. Verwey, Physica, 1935, 2(12), 1059-1063.   DOI
40 L. Yang, L. Pastor-Perez, S. Gu, A. Sepulveda-Escribano, T. R. Reina, Appl. Catal. B, 2018, 232, 464-471.   DOI
41 S. D. Dahlgren, Metallurgical Transactions A, 1977, 8, 347-351.   DOI
42 M. A. Iqbal, L. Sun, A. M. LaChance, H. Ding, M. Fedel, Dalton Trans., 2020, 49(13), 3956-3964.   DOI
43 D. Vermilyea, J. Electrochem. Soc. 1957, 104(7), 427- 433.   DOI
44 Y. Ma, H. Wu, X. Zhou, K. Li, Y. Liao, Z. Liang, L. Liu, Corros. Sci., 2019, 158, 108110.   DOI
45 H. Shi, M. Yu, J. Liu, G. Rong, R. Du, J. Wang, S. Li, Corros. Sci., 2020, 108642.
46 B. Zhu, M. Fedel, N-E. Andersson, P. Leisner, F. Deflorian, C. Zanella, J. Electrochem. Soc., 2017, 164(7), C435.   DOI
47 S. Thongmee, H. L. Pang, J. Ding, J. B. Yi, J. Y. Lin, IEEE Trans Nanotechnol., 2008, 1116-1120.
48 B. Hamrakulov, I-S. Kim, M. G. Lee, B. H. Park, Trans. Nonferrous Met. Soc. China, 2009, 19, s83-s87.   DOI
49 M. Sarraf, B. Nasiri-Tabrizi, A. Dabbagh, W. J. Basirun, N. L. Sukiman, Ceram. Int., 2020, 46(6), 7306-7323.   DOI
50 S. Wang, Y. Tian, C. Wang, C. Hang, H. Zhang, Y. Huang, Z. Zheng, ACS Omega, 2019, 4(4), 6092-6096.   DOI
51 A. Venkatesan, E. S. Kannan, Curr. Appl. Phys., 2017, 17(5), 806-812.   DOI
52 V. Milusheva, M. Georgieva, B. Tzaneva, M. Petrova, IEEE XXVII International Scientific Conference Electronics (ET)., 2018, 18289006
53 C. P. Bean, J. C. Fisher, D. A. Vermilyea, Phys. Rev. 1956, 101(2), 551.   DOI
54 J. F. J. Dewald, Phys. and Chem. Solids, 1957, 2, 55-66.   DOI
55 C. E. Mortimer, U. Mueller, Chemie., 2010, 353-355.
56 G. D. Sulka, Nanostructured Materials in Electrochemistry., 2008, 1, 1-116.
57 R. Abdel-Karim, S. M. El-Raghy, 7 Fabrication of Nanoporous Alumina., 2016.
58 C. Girginov, S. Kozhukharov, Aluminium Oxide: Structure, Production and Applications., 2020, 1-108.
59 M. Carnes, D. Buccella, J. Chen, A. Ramirez, N. Turro, C. Nuckolls, M. Steigerwald, Angewandte Chemie Internat. Ed. 2009, 48(2), 290-294. doi:10.1002/anie.20080443   DOI
60 S. Kozhukharov, V. Kozhukharov, M. Wittmar, M. Schem, M. Aslan, H. Caparrotti, M. Veith, Prog. Org. Coat., 2011, 71(2), 198-205.   DOI
61 K. Shimizu, H. Habazaki, P. Skeldon, G.E. Thompson, G.C. Wood, Electrochim. Acta 2000, 45(11), 1805-1809.   DOI
62 P. Prieto-Cortes, R. Alvarez-Tamayo, M. Garcia-Mendez, M. Duran-Sanchez, Sensors (Basel), 2019, 19(19), 4189.   DOI
63 N. Reddy, P. Bera, V. R. Reddy, N. Sridhara, A. Dey, C. Anandan, A. K. Sharma, Ceram. Internat., 2014, 40(7), 11099-11107.   DOI
64 W. J. Stepniowski, M. Moneta, M. Norek, M. Michalska-Domanska, A. Scarpellini, M. Salerno, Electrochim. Acta, 2016, 211, 453-460.   DOI
65 S. Kozhukharov, Ch. Girginov, I. Avramova, M. Machkova, Mater. Chem. Phys., 2016, 180, 301-313.   DOI
66 Ch. Girginov, I. Kanazirski, Tz. Dimitrov, V. Todorov, J. Univ. Chem. Technol. Met., 2012, 47(2), 193-196.
67 J. E. B. Randles, Discuss. Faraday Soc., 1947, 1, 11-19.   DOI
68 V. Milusheva, T. Karagyozov, B. Tzaneva, V. Videkov, International Conference on High Technology for Sustainable Development., 2018, 18308424.
69 C. A. Girginov, S. V. Kozhukharov, M. J. Milanes, Bulg. Chem. Commun., 2018, 50(A), 6-12.
70 T.A. Carlson, G.E. McGuire, J. Electron. Spectros. Relat. Phenomena, 1972, 1(2), 161-168.   DOI
71 B. Barik, P. S. Nayak, L. S. K. Achary, A. Kumar, P. Dash, New J. Chem., 2020, 44(2), 322-337.   DOI
72 A. Lasia, In Modern Aspects of Electrochemistry., 2002, 143-248.
73 W. J. Stepniowski, Current Nanoscience, 2018, 15(1), 3-5.   DOI
74 T. Kikuchi, A. Takenaga, S. Natsui, R. O. Suzuki, Surf. Coat. Technol., 2017, 326, 72-78.   DOI
75 T. Kikuchi, D. Nakajima, O. Nishinaga, S. Natsui, R. O. Suzuki, Curr. Nanosci., 2015, 11, 560-571.   DOI
76 A. Nowak-Stepniowska, Curr. Nanosci., 2015, 11(5), 581-592.   DOI
77 A. Belwalkar, E. Grasing, W. Van Geertruyden, Z. Huang, W. Z. Misiolek, J. Memb. Sci., 2008, 319(1-2), 192-198.   DOI
78 M. Sepulveda, J. G. Castano, F. Echeverria, Appl. Surf. Sci., 2018, 454, 210-217.   DOI
79 H-C. Chuang, G-Y. Hong, J. Sanchez, Mater. Sci. Semicond. Process., 2016, 45, 17-26   DOI
80 A. Wazwaz, J. Salmi, R. Bes, Energ. Convers. Manage., 2010, 51(8), 1679-1683.   DOI
81 M. C. Biesinger, L. W. M. Lau, A. R. Gerson, R. St. C. Smart, Appl. Surf. Sci., 2010, 257(3), 887-898.   DOI
82 A. P. Grosvenor, M. C. Biesinger, R. St. C. Smart, N. S. McIntyre, Surf. Sci., 2006, 600(9), 1771-1779.   DOI
83 M. C. Biesinger, B. P. Payne, L. W. M. Lau, A. Gerson, R. St. C. Smart, Surf. Interface Anal., 2009, 41(4), 324-332.   DOI
84 A. F. Carley, S. D. Jackson, J. N. O'Shea, M. W. Roberts, Surf. Sci., 1999, 440(3), L868-L874.   DOI
85 S. Hufner, Photoelectron spectroscopy, Solid State Science Series, 1995, 82.
86 G. D. Park, J. S. Cho, Y. C. Kang, Nanoscale, 2015, 7(40), 16781-16788.   DOI
87 S. N. Kumar, L. K. Malhotra, K. L. Chopra, Sol. Energy Mater., 1980, 3(4), 519-532.   DOI
88 B. R. Tzaneva, A. I. Naydenov, S. Z. Todorova, V. H. Videkov, V. S. Milusheva, P. K. Stefanov, Electrochim. Acta, 2016, 191, 192-199.   DOI
89 R. P. Gautam, H. Pan, F. Chalyavi, M. J. Tucker, C. J. Barile, Catal. Sci. Technol., 2020, 10, 4960-4967.   DOI
90 A. Andersson, O. Hunderi, C. G. Granqvist, J. Appl. Phys., 1980, 51, 752-763.
91 S. N. Kumar, L. K. Malhotra, K. L. Chopra, Sol. Energy Mater., 1983, 7(4), 439-452.   DOI
92 M. Zemanova, M. Chovancova, Z. Galikova, P. Krivosik, Renew. Energ., 2008, 33(10), 2303-2310.   DOI
93 M. Zemanova, M. Chovancova, P. Krivosik, Chem. Pap., 2009, 63(1), 62-70.   DOI
94 M. Zemanova, M. Gal, E. Usak, J. Jurisova, J. Appl. Electrochem., 2010, 40(5), 981-988.   DOI
95 T. Bostrom, E. Wackelgard, G. Westin, Sol. Energy, 2003, 74(6), 497-503.   DOI
96 M. P. Proenca, C. T. Sousa, J. Ventura, M. Vazquez, J. P. Araujo, Electrochim. Acta, 2012, 72, 215-221.   DOI
97 I. Kanazirski, Ch. Girginov, A. Girginov, Adv. Natur. Sci., 2012, 1, 45-51.
98 M. Jitaru, A-M. Toma, M-C. Tertis, A. Trifoi, Environ. Eng. Manag. Jour., 2009, 8(4).
99 H. Wei, H. Hu, M. Chang, Y. Zhang, D. Chen, M. Wang, Ceram. Internat., 2017, 43(15), 12472-12479.   DOI