Browse > Article
http://dx.doi.org/10.1186/s42649-020-00044-5

The LaserFIB: new application opportunities combining a high-performance FIB-SEM with femtosecond laser processing in an integrated second chamber  

Ben Tordoff (ZEISS Research Microscopy Solutions)
Cheryl Hartfield (ZEISS Process Control Solutions)
Andrew J. Holwell (ZEISS Research Microscopy Solutions)
Stephan Hiller (ZEISS Research Microscopy Solutions)
Marcus Kaestner (ZEISS Process Control Solutions)
Stephen Kelly (Carl Zeiss X-ray Microscopy)
Jaehan Lee (ZEISS Research Microscopy Solutions)
Sascha Muller (ZEISS Process Control Solutions)
Fabian Perez-Willard (ZEISS Research Microscopy Solutions)
Tobias Volkenandt (ZEISS Research Microscopy Solutions)
Robin White (Carl Zeiss X-ray Microscopy)
Thomas Rodgers (ZEISS Research Microscopy Solutions)
Publication Information
Applied Microscopy / v.50, no., 2020 , pp. 24.1-24.11 More about this Journal
Abstract
The development of the femtosecond laser (fs laser) with its ability to provide extremely rapid athermal ablation of materials has initiated a renaissance in materials science. Sample milling rates for the fs laser are orders of magnitude greater than that of traditional focused ion beam (FIB) sources currently used. In combination with minimal surface post-processing requirements, this technology is proving to be a game changer for materials research. The development of a femtosecond laser attached to a focused ion beam scanning electron microscope (LaserFIB) enables numerous new capabilities, including access to deeply buried structures as well as the production of extremely large trenches, cross sections, pillars and TEM H-bars, all while preserving microstructure and avoiding or reducing FIB polishing. Several high impact applications are now possible due to this technology in the fields of crystallography, electronics, mechanical engineering, battery research and materials sample preparation. This review article summarizes the current opportunities for this new technology focusing on the materials science megatrends of engineering materials, energy materials and electronics.
Keywords
LaserFIB; FIB-SEM; PFIB; Crossbeam laser; Femtosecond laser; Dual chamber SEM;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Moniri, S., Bale, H., Volkenandt, T., Wang, Y., Gao, J., Lu, T.,. .. Shahani, A. J. (2020). Multi-step crystallization of self-organized spiral eutectics. Small, 16(8), 1906146. https://doi.org/10.1002/smll.201906146   DOI
2 Schubert TBT (2020). Rapid sample preparation for EBSD analysis. ZEISS Applications White Paper.
3 Hare, E. (2017). Failure analysis of LEDs. Retrieved July 25, 2020, from SEMLab. com: https://www.semlab.com/papers2017/failure-analysis-of-leds.pdf
4 M.P. Echlin, T.L. Burnett, A.T. Polonsky, T.M. Pollock, P.J. Withers, Serial sectioning in the SEM for three dimensional materials science. Curr. Opinion Solid State Mater. Sci. 24(2), 100817 (2020) https://doi.org/10.1016/j.cossms.2020.100817   DOI
5 S.R. Daemi, C. Tan, T. Volkenandt, S.J. Cooper, A. Palacios-Padros, J. Cookson, et al., Visualizing the carbon binder phase of battery electrodes in three dimensions. ACS Appl. Energy Mater. 1(8), 3702-3710 (2018) https://doi.org/10.1021/acsaem.8b00501   DOI
6 Shearing, P. R., Brandon, N. P., Gelb, J., Bradley, R., Withers, P. J., Marquis, A. J.,. .. Harris, S. J. (2012). Multi length scale microstructural investigations of a commercially available li-ion battery electrode. J. Electrochem. Soc., 159(7), A1023. https://doi.org/10.1149/2.053207jes   DOI
7 N.L. LaHaye, S.S. Harilal, P.K. Diwakara, A. Hassaneina, The effect of laser pulse duration on ICP-MS signal intensity, elemental fractionation, and detection limits in fs-LA-ICP-MS. J. Anal. At. Spectrom. 28, 1781-1787 (2013) https://doi.org/10.1039/C3JA50200G   DOI
8 T.L.R.K. Burnett, Large volume serial section tomography by Xe Plasma FIB dual beam microscopy. Ultramicroscopy, 119-129 (2016) https://doi.org/10.1016/j.ultramic.2015.11.001   DOI
9 Ali, A. M., Ong, A., & Konneh, M. (2005). Micromilling of tungsten carbide using focused ion beam. Proceedings of the International Conference on Mechanical Engineering, AM-24.
10 R. Barnett, S. Mueller, S. Hiller, F. Perez-Willard, J. Strickland, H. Dong, Rapid production of pillar structures on the surface of single crystal CMSX-4 superalloy by femtosecond laser machining. Opt. Lasers Eng. 127, 105941 (2020) https://doi.org/10.1016/j.optlaseng.2019.105941   DOI
11 A. Poozhikunnath, e. a., Favata, J., Ahmadi, B., Xiong, J., Shahbazmohamadi, S., Bonville, L., & Maric, R. (2019). A correlative and multi-modal approach to analyzing microscopic particulate contaminants in carbon black. Microsc. Microanal., 25(S2), 418. https://doi.org/10.1017/S1431927619002824   DOI
12 A. Hamad, in High energy and short pulse lasers, ed. by R. Viskup. Effects of different laser pulse regimes (nanosecond, picosecond and femtosecond) on the ablation of materials for production of nanoparticles in liquid solution (InTech, Jeneza Trdine, Croatio, 2016), p. 304 https://doi.org/10.5772/61628   DOI
13 M. Kaestner, S. Mueller, T. Gregorich, C. Hartfield, C. Nolan, I. Schulmeyer, Novel workflow for high-resolution imaging of structures in advanced 3D and fan-out packages, China Semiconductor Technology International Conference (CSTIC) (IEEE, Shanghai, 2019), pp. 1-3. https://doi.org/10.1109/CSTIC.2019.8755668   DOI
14 Pfeifenberger, M. J., Mangang, M., Wurster, S., Reiser, J., Hohenwarter, A., Pfleging, W.,. .. Pippan, R. (2017). The use of femtosecond laser ablation as a novel tool for rapid micro-mechanical sample preparation. Mater. Des., 121, 109-118. https://doi.org/10.1016/j.matdes.2017.02.012   DOI
15 Boyd, S., Dornfeld, D., Krishnan, N., & Moalem, M. (2007). Environmental challenges for 45-nm and 32-nm node CMOS logic. Retrieved July 29, 2020, from https://escholarship.org/uc/item/81h91626.
16 E. Gurevich, Mechanisms of femtosecond LIPSS formation induced by periodic surface temperature modulation. Appl. Surf. Sci. 374, 56-60 (2016) https://doi.org/10.1016/j.apsusc.2015.09.091   DOI