• Title/Summary/Keyword: electron gun

Search Result 322, Processing Time 0.032 seconds

Study on electrical characteristics of plastic ITO film with bending on multi-barrier films (다층박막을 이용한 플라스틱 ITO 필름의 bending에 따른 전기적 특성 연구)

  • Park, Jun-Baek;Lee, Yun-Gun;Hwang, Jeoung-Yeon;Seo, Dae-Shik;Park, Sung-Kyu;Moon, Dae-Gyu;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.177-180
    • /
    • 2003
  • We investigated transmittance, surface characteristics, and resistivity according to bending of ITO(indium tin oxide) film with four other multi-barrier film. Transmission data of ITO film with four ITO films showed there was about large 90% transmission above 550nm wavelength at three multi-barrier structures. But, both-side hard coated structure showed relatively low 75% transmission above 550nm wavelength. And, surface images measured from SEM(scanning electron microscope) showed both-side hard coated structure have a tendency of more roughness. Also, resistivity change of four other multi-barrier film showed there was the lowest change at one-side hardcoated structure. Subsequently, with result of resistivity change according to position, we knew the resistivity change of the center increased rapidly than that of the edge.

  • PDF

Fabrication of phosphorus doped ZnO thin film using multi-layer structure (다층 구조를 이용한 Phosphorus 도핑된 ZnO 박막 제작)

  • Kang, Hong-Seong;Lim, Sung-Hoon;Chang, Hyun-Woo;Kim, Gun-Hee;Kim, Jong-Hoon;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.27-29
    • /
    • 2005
  • ZnO and phosphorus doped ZnO thin films (ZnO:P) are deposited by pulsed laser deposition grown on (001) $Al_{2}O_{3}$. ZnO/ZnO:P/ZnO/$Al_{2}O_{3}$ (multi-layer) structure was used for phosphorus doped ZnO fabrication. This multi-layer structure thin film was annealed at $400^{\circ}C$ for 40 min. The electron concentration of that was changed from $10^{19}$ to $10^{16}/cm^{-3}$ after annealing. ZnO thin films with encapsulated structure showed the enhanced structural and optical properties than phosphorus doped ZnO without encapsulated layer. In this study, encapsulated ZnO structure was suggested to enhance electrical, structural and optical properties of phosphorus doped ZnO thin film and it was identified that encapsulated structure could be used to fabricate high quality phosphorus doped ZnO thin film.

  • PDF

Inward Diffusion of Tb Ions and the Magnetic Properties of the Nd-Fe-B Magnets (열처리 조건에 따른 Tb이온의 확산 및 Nd-Fe-B 자석의 자기적 특성)

  • Oh, Seong-Uk;Kim, Dong-Whan;Gong, Gun-Seung;Heo, Young-Woo;Kim, Jeong-Joo;Lee, Joon-Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.1
    • /
    • pp.27-31
    • /
    • 2017
  • In this study, the effect of Tb inward diffusion on the magnetic properties of the Nd-Fe-B sintered magnets was studied. After sintering of the magnets, $TbF_3$ slurries were dip-coated on the surface of the samples, then heat-treatment was followed for $TbF_3$ diffusion. The element distribution in the magnets and the diffusion profiles of Tb ions were analyzed by an EPMA (electron probe micro-analyzer). Prolonged heat treatment resulted in a deeper diffusion length of Tb ions. Coercivity of the $1^{st}$ heat-treated sample showed 21.86 kOe, while that of the $1^{st}$, $2^{nd}$ heat-treated and annealed sample revealed 34 kOe.

Effects of Materials Composition in CNT Paste on Field Emission Properties in Carbon Nanotube Cathodes (인쇄용 페이스트의 조성변화가 탄소나노튜브 캐소드의 전계방출 특성에 미치는 영향)

  • Choi, Woo-Suk;Shin, Heo-Young;Kim, Dong-Hee;Ahn, Byung-Gun;Chung, Won-Sub;Lee, Dong-Gu;Cho, Young-Rea
    • Korean Journal of Materials Research
    • /
    • v.13 no.10
    • /
    • pp.663-667
    • /
    • 2003
  • The effects of paste materials on field emission properties in a carbon nanotube(CNT) cathode were investigated for high-efficient field emission displays. The major components in CNT paste for screen printing were a metallic Ag-paste, a dielectric glass-frit and CNT ink. The emission current from the cathode by an electron tunneling effect increased with an increase in the dielectric material fraction in the CNT paste, which is related to an increase of field enhancement factor in Fowler-Nordheim equation. The surface treatment used, after soft baking of the screen-printed CNT films, greatly affected the decrease in the turn-on field in CNT cathode and the uniformity of emission sites over the entire CNT film area.

Structural and discharge characteristics of MgO films prepared by Arc Ion Plating (AIP) method

  • Kim, Jong-Kuk;Kim, Do-Geun;Lee, Eun-Sung;Lee, Sung-Hun;Lee, Gun-Hwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.625-627
    • /
    • 2002
  • MgO thin films were deposited on glass and (100) Si substrates by an Arc Ion Plating (AIP) equipment using a magnesium metal target at various oxygen gas flow. In this work, we investigated the relationship between the structural properties and the discharge characteristics of MgO coating layers. X-ray diffraction and AFM have been used to study behaviors of the structure and surface morphology. The optical transmittance and the ion induced secondary electron emission coefficient of the MgO films have been also measured. The resistivity of the deposited MgO films was gradually increased from 0.17 G ohm/${\square}$ to 0.35 G ohm/${\square}$ with the oxygen gas flow. The growth rate of the MgO coating layer was decreased with increasing the oxygen gas flow, while the optical transmittance was improved.

  • PDF

Investigation on the Electrical Properties of Ion Implanted ZnO Thin Film (이온 주입된 ZnO 박막의 전기적 특성 연구)

  • Kang, Hong-Seong;Lim, Sung-Hoon;Chang, Hyun-Woo;Kim, Gun-Hee;Kim, Jong-Hoon;Lee, Sang-Yeol;Lee, Jung-Kun;Nastasi, Michael
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.49-50
    • /
    • 2005
  • Nitrogen and phosphorus ions were implanted into ZnO thin film fabricated by pulsed laser deposition. ion implanted ZnO thin films were annealed from $700^{\circ}C$ to $1000^{\circ}C$ using rapid thermal annealing process. The electron concentration was changed form $10^{20}$ to $10^{18}/cm^3$. Effect of nitrogen and phosphorus in ZnO thin films was certified and the structural and optical properties of nitrogen and phosphorus doped ZnO thin films depending on concentration of nitrogen and phosphorus were investigated.

  • PDF

GROWTH OF CARBON NANOTUBES ON GLASS BY MICROWAVE PLASMA CHEMICAL VAPOR DEPOSITION (마이크로웨이브 플라즈마 화학기상증착장비를 사용한 유리기판상의 탄소나노튜브의 합성)

  • Lee, Jae-Hyeoung;Choi, Sung-Hun;Choi, Won-Seok;Hong, Byung-You;Kim, Jeong-Tae;Lim, Dong-Gun;Yang, Kea-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.99-100
    • /
    • 2005
  • We have grown carbon nanotubes (CNTs) with a microwave plasma chemical vapor deposition (MPECVD) method, which has been regard as one of the most promising candidates for the synthesis of CNTs due to the vertical alignment, the low temperature and the large area growth. We use methane ($CH_4$) and hydrogen ($H_2$) gas for the growth of CNTs. 60 nm thick Ni catalytic layer were deposited on the TiN coated glass substrate by RF magnetron sputtering method. In this work, we report the effects of pressure on the growth of CNTs. We have changed pressure of processing (10 $\sim$ 20 Torr) deposition of CNTs. SEM (Scanning electron microscopy) images show diameter, length and cross section state CNTs.

  • PDF

Characterization of Phosphorus Doped ZnO Thin Films grown by Pulsed Laser Deposition Method (펄스 레이저 증착법에 의해 증착된 Phosphorus 도핑된 ZnO 박막의 특성 분석)

  • Lim, Sung-Hoon;Kang, Hong-Seong;Kim, Gun-Hee;Chang, Hyun-Woo;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.55-56
    • /
    • 2005
  • The properties of phosphorus doped ZnO thin films deposited on (001) sapphire substrates by pulsed laser deposition (PLD) were investigated depending on various deposition conditions. The phosphorus (P) doped ZnO target was composed of ZnO + x wt% Al (x=1, 3, 5). The structural, electrical and optical properties of the ZnO thin films were measured by X-ray diffraction (XRD), Hall measurements and photoluminescence (PL). As the deposition temperature optimized, the electrical properties of the phosphorus doped ZnO (ZnO:P) layer showed a electron concentration of $7.76\times10^{16}/cm^3$, a mobility of 10.225 $cm^2/Vs$, a resistivity of 7.932 $\Omega$cm. It was observed the electrical property of the film was changed by dopant activation effect as target variations and deposition conditions.

  • PDF

Characteristic Study for Defect of Top Si and Buried Oxide Layer on the Bonded SOI Wafer (Bonded SOI wafer의 top Si과 buried oxide layer의 결함에 대한 연구)

  • Kim Suk-Goo;Paik Un-gyu;Park Jea-Gun
    • Korean Journal of Materials Research
    • /
    • v.14 no.6
    • /
    • pp.413-419
    • /
    • 2004
  • Recently, Silicon On Insulator (SOI) devices emerged to achieve better device characteristics such as higher operation speed, lower power consumption and latch-up immunity. Nevertheless, there are many detrimental defects in SOI wafers such as hydrofluoric-acid (HF)-defects, pinhole, islands, threading dislocations (TD), pyramid stacking faults (PSF), and surface roughness originating from quality of buried oxide film layer. Although the number of defects in SOI wafers has been greatly reduced over the past decade, the turn over of high-speed microprocessors using SOI wafers has been delayed because of unknown defects in SOI wafers. A new characterization method is proposed to investigate the crystalline quality, the buried oxide integrity and some electrical parameters of bonded SOI wafers. In this study, major surface defects in bonded SOI are reviewed using HF dipping, Secco etching, Cu-decoration followed by focused ion beam (FIB) and transmission electron microscope (TEM).

Influence of Metallic Contamination on Photovoltaic Characteristics of n-type Silicon Solar-cells (중금속 오염이 n형 실리콘 태양전지의 전기적 특성에 미치는 영향에 대한 연구)

  • Kim, Il-Hwan;Park, Jun-Seong;Park, Jea-Gun
    • Current Photovoltaic Research
    • /
    • v.6 no.1
    • /
    • pp.17-20
    • /
    • 2018
  • The dependency of the photovoltaic performance of p-/n-type silicon solar-cells on the metallic contaminant type (Fe, Cu, and Ni) and concentration was investigated. The minority-carrier recombination lifetime was degraded with increasing metallic contaminant concentration, however, the degradation sensitivity of recombination lifetime was lower at n-type than p-type silicon wafer, which means n-type silicon wafer have an immunity to the effect of metallic contamination. This is because heavy metal ions with positive charge have a much larger capture cross section of electron than hole, so that reaction with electrons occurs much more easily. The power conversion efficiency of n-type solar-cells was degraded by 9.73% when metallic impurities were introduced in the silicon bulk, which is lower degradation compared to p-type solar-cells (15.61% of efficiency degradation). Therefore, n-type silicon solar-cells have a potential to achieve high efficiency of the solar-cell in the future with a merit of immunity against metal contamination.