Browse > Article
http://dx.doi.org/10.21218/CPR.2018.6.1.017

Influence of Metallic Contamination on Photovoltaic Characteristics of n-type Silicon Solar-cells  

Kim, Il-Hwan (Department of Electrics and Computer Engineering, Hanyang University)
Park, Jun-Seong (Department of Electrics and Computer Engineering, Hanyang University)
Park, Jea-Gun (Department of Electrics and Computer Engineering, Hanyang University)
Publication Information
Current Photovoltaic Research / v.6, no.1, 2018 , pp. 17-20 More about this Journal
Abstract
The dependency of the photovoltaic performance of p-/n-type silicon solar-cells on the metallic contaminant type (Fe, Cu, and Ni) and concentration was investigated. The minority-carrier recombination lifetime was degraded with increasing metallic contaminant concentration, however, the degradation sensitivity of recombination lifetime was lower at n-type than p-type silicon wafer, which means n-type silicon wafer have an immunity to the effect of metallic contamination. This is because heavy metal ions with positive charge have a much larger capture cross section of electron than hole, so that reaction with electrons occurs much more easily. The power conversion efficiency of n-type solar-cells was degraded by 9.73% when metallic impurities were introduced in the silicon bulk, which is lower degradation compared to p-type solar-cells (15.61% of efficiency degradation). Therefore, n-type silicon solar-cells have a potential to achieve high efficiency of the solar-cell in the future with a merit of immunity against metal contamination.
Keywords
Si solar-cell; PV characteristics; contamination; metal; n-type;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Schmidt, A. G. Aberle, R. Hezel, "Investigation of carrier lifetime instabilities in Cz-grown silicon", in Proceedings of the 1997 IEEE 26th Photovoltaic Specialists Conference, pp. 13-18, 1997.
2 J. Schmidt, K. Bothe, "Structure and transformation of the metastable boron- and oxygen-related defect center in crystalline silicon", Phys. Rev. B, Vol. 69, pp. 024107, 2004.   DOI
3 K. Graff, Metal impurities in silicon-device fabrication, Springer Science & Business Media, 2013.
4 A. A. Istratov, E. R. Weber, "Electrical properties and recombination activity of copper, nickel and cobalt in silicon", Appl. Phys. A, Vol. 66, pp. 123-136, 1998.   DOI
5 A. A. Istratov, H. Hieslmair, E. R. Weber, "Iron and its complexes in silicon", Appl. Phys. A, Vol. 69, pp.13-44, 1999.   DOI
6 B. G. Streetman, Solid State Electronic Devices, Pearson Prentice Hall, 2006.
7 S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, Inc., 2007.
8 S. W. Glunz, S. Rein, J. Y. Lee, W. Warta, "Minority carrier lifetime degradation in boron-doped Czochralski silicon", J. Appl. Phys., Vol. 90, pp. 2397-2404, 2001.
9 P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J. F. Lelievre, A. Chaumartin, A. Fave, M. Lemiti, "Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching", Sol. Energy Mater. Sol. Cells, Vol. 90, pp. 2319-2328, 2006.   DOI
10 U. Jager, S. Mack, C. Wufka, A. Wolf, D. Biro, R. Preu, "Benefit of selective emitters for p-Type silicon solar cells with passivated surfaces", IEEE J. Photovolt., Vol. 3, No. 2, pp. 621-627, 2013.   DOI
11 E. Van Kerschaver, G. Beaucarne, "Back-contact solar cells: a review", Prog. Photovolt: Res. Appl., Vol. 14, pp. 107-123, 2006.   DOI
12 C. Gong, S. Singh, J. Robbelein, N. Posthuma, E. Van Kerschaver, J. Poortmans, R. Mertens, "High efficient n-type back-junction back-contact silicon solar cells with screen-printed al-alloyed emitter and effective emitter passivation study", Prog. Photovolt: Res. Appl., Vol. 19, pp. 781-786, 2011.   DOI
13 F. Feldmann, M. Bivour, C. Reichel, M. Hermle, S. W. Glunz, "Passivated rear contacts for high-efficiency n-type Sisolar cells providing high interface passivation quality and excellent transport characteristics", Sol. Energy Mater. Sol. Cells, Vol. 120, pp. 270-274, 2014.   DOI
14 M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, E. Maruyama, "24.7% Record efficiency HIT solar cell on thin silicon wafer", IEEE J. Photovolt., Vol. 4, No. 1, pp. 96-99, 2014.   DOI
15 K. Masuko, M. Shigematsu, T. Hashiguchi, D Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, S. Okamoto, "Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell", IEEE J. Photovolt., Vol. 4, No. 6, pp. 1433-1435, 2014.   DOI
16 A. Rehman, S. H. Lee, "Advancements in n-Type base crystalline silicon solar cells and their emergence in the photovoltaic industry", Scientific World Journal 2013, 2013.
17 D. Macdonald, L. J. Geerligs, "Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon", Appl. Phys. Lett, Vol. 85, pp. 4061-4063, 2004.   DOI