• 제목/요약/키워드: electron concentration

검색결과 2,172건 처리시간 0.034초

황화납 양자점 기반 단파장 적외선 수광소자의 전기적 특성 향상을 위한 산화아연 나노입자 농도의 중요성 (Importance of Zinc Oxide Nanoparticle Concentration on the Electrical Properties of Lead Sulfide Quantum Dots-Based Shortwave Infrared Photodetectors)

  • 서경호;배진혁
    • 센서학회지
    • /
    • 제31권2호
    • /
    • pp.125-130
    • /
    • 2022
  • We describe the importance of zinc oxide nanoparticle (ZnO NP) concentration in the enhancement of electrical properties in a lead sulfide quantum dot (PbS QD)-based shortwave infrared (SWIR) photodetector. ZnO NPs were synthesized using the sol-gel method. The concentration of the ZnO NPs was controlled as 20, 30 and 40 mg/mL in this study. Note that the ZnO NPs layer is commonly used as an electron transport layer in PbS QDs SWIR photodetectors. The photo-to-dark ratio, which is an important parameter of a photodetector, was intensively examined to evaluate the electrical performance. The 20 mg/mL condition of ZnO NPs exhibited the highest photo-to-dark ratio value of 5 at -1 V, compared with 1.8 and 0.4 for 30 mg/mL and 40 mg/mL, respectively. This resulted because the electron mobility decreased when the concentration of ZnO NPs was higher than the optimized value. Based on our results, the concentration of ZnO NPs was observed to play an important role in the electrical performance of the PbS QDs SWIR photodetector.

Physiological Activities of Roots Extracts from Calystegia japonica

  • Lee, Yang-Suk;Choi, Bok-Dong;Joo, Eun-Young;Kim, Nam-Woo
    • 대한의생명과학회지
    • /
    • 제15권4호
    • /
    • pp.335-342
    • /
    • 2009
  • This study was investigated to evaluate the contents of polyphenols and flavonoids, and physiological activities of various extracts from Calystegia japonica roots for making good use of their functional materials. The roots of C. japonica were extracted with water (WE), ethanol (EE) and hot water (HWE) by different methods. Among these extracts, the highest extracting yield was 30.30% of HWE, while the highest contents of total polyphenols and flavonoids were 40.85% and 6.40% of WE, respectively. The nitrite scavenging abilities were ranged from 31.31% (HWE) to 37.46% (EE) at pH 1.2 and 1.0 mg/ml concentration. In the measurements of electron donating abilities, EE showed the highest effect as 91.83% at 0.3 mg/ml assay concentration, and the electron donating ability was decreased as the extract concentration was increased. In the results of superoxide dismutase (SOD)-like activity, HWE showed the highest effect as 7.15% at 1.0 mg/ml. The tyrosinase inhibition activities of WE and EE were 15.28% and 14.97%, respectively. The xanthine oxidase inhibitory effects were ranged from 97.50 to 99.28% at 1.0 mg/ml. These results indicate that C. japonica extract has a good antioxidant effects and could be useful for developing functional products.

  • PDF

실리콘 전력 MOSFET의 온도 관련 항복 전압과 ON 저항을 위한 해석적 표현 (Analytical Expressions of Temperature Dependent Breakdown Voltage and On-Resistance for Si Power MOSFETs)

  • 정용성
    • 대한전자공학회논문지SD
    • /
    • 제40권5호
    • /
    • pp.290-297
    • /
    • 2003
  • 전자와 정공의 온도 관련 이온화 계수로부터 추출한 온도 함수의 유효 이온화 계수 및 전자 이동도를 이용하여 실리콘 전력 MOSFET의 항복 전압과 on 저항을 위한 온도 함수의 해석적 표현식을 유도하였다. 온도 함수의 해석적 항복 전압 결과를 4x10/sup 14/ cm/sup -3/, 1x10/sup 15/ cm/sup -3/, 6x10/sup 16/ cm/sup -3/의 도핑 농도에 대해 각각 실험 결과와 비교하였고, 온도 및 항복 전압 함수의 on 저항 변화도 각각 실험 결과와 비교하였다. 각농도에 따른 온도 함수의 해석적 항복 전압은 77∼300k의 온도 범위에서 실험 결과와 10% 이내의 오차로 잘 일치하였다.

Carboxymethycellulose의 농도에 따른 방사선 분해 연구 (Effect of Concentration of Carboxymethycellulose on Degradation by Radiation)

  • 김정수;성낙윤;김재훈;김태운;이주운;최종일
    • 방사선산업학회지
    • /
    • 제4권4호
    • /
    • pp.385-389
    • /
    • 2010
  • In this study, the effect of the concentration of carboxymethylcellulose (CMC) solution on the degradation by irradiation was investigated. The CMC solutions with different concentrations of 3%, 4%, 5%, 6% and 7% were irradiated at the doses of 5, 10, 15, 20, 25 and 30 kGy with gamma ray or electron beam, and the viscosity of CMC solution was measured. The viscosity of the CMC solutions was decreased with an increase in the irradiation dose, but the extent of the degradation by an irradiation was found to be decreased with an increase of the CMC concentration in the solution. The dependency of the irradiation sources showed that an electron beam radiation had degraded the CMC less severely than gamma ray.

Physicochemical Properties and Antioxidant Effects of Fucoidans Degraded by Hydrogen Peroxide under Electron Beam at Various Irradiation Doses

  • Jeong, Gyeong-Won;Choi, Yoo-Sung
    • 공업화학
    • /
    • 제33권3호
    • /
    • pp.322-327
    • /
    • 2022
  • Fucoidans were degraded by hydrogen peroxide under the electron beam (2.5 MeV) with various radiation doses (5 kGy, 10 kGy, 15 kGy, and 20 kGy) at room temperature. The degradation property was analyzed with a gel permeation chromatography (GPC-MALLS) method. An average molecular weight of fucoidan decreased from 99,956 at the irradiation dose of 0 kGy to 6,725 at the irradiation dose of 20 kGy. The solution viscosity of fucoidans showed a similar pattern to the molecular weight change. The number of chain breaks per molecule (N) increased with increasing the irradiation dose and concentration of hydrogen peroxide. The radiation yield of scission value markedly increased with increasing the irradiation dose up to 15 kGy. Also a 10% hydrogen peroxide concentration was more efficient than that of 5%. The structures of degraded fucoidan samples were studied with Fourier transform infrared spectroscopy (FT-IR). The results showed that the degradation process did not significantly change the chemical structure or the content of sulfate group. The sulfur content of each sample was determined with an Elemental Analyzer. With increasing the concentration of hydrogen peroxide, the ratios of sulfur/carbon, hydrogen/carbon, and nitrogen/carbon slightly decreased. The antioxidant activities of fucoidans were investigated based on hydroxyl radical scavenging activities. The ability of fucoidan to inhibit the hydroxyl radical scavenging activity was depended on its molecular weight.

Effects of Sub Minimal Inhibitory Concentration of Metronidazole and Penicillin on Morphology of Aggregatibacter actinomycetemcomitans: Scanning Electron Microscopy Observation

  • Kwon, Ye Won;Lee, Si Young
    • International Journal of Oral Biology
    • /
    • 제40권1호
    • /
    • pp.35-39
    • /
    • 2015
  • Minimal inhibitory concentration (MIC) is the lowest concentration of antibiotics that inhibits the visible growth of bacteria. It has been reported that sub-MIC of antibiotics may result in morphological alterations, along with the biochemical and physiological changes in bacteria. The purpose of this study was to examine morphological changes of Aggregatibacter actinomycetemcomitans, after the treatment with sub-MIC metronidazole and penicillin. The bacterial morphology was observed with scanning electron microscope, after incubating with sub-MIC antibiotics. The length of A. actinomycetemcomitans was increased after the incubation with sub-MIC metronidazole and penicillin. Sub-MIC metronidazole and penicillin inhibited bacterial division and induced long filaments. Our study showed that metronidazole and penicillin can induce the morphological changes in A. actinomycetemcomitans.

7Li-NMR and Thermal Analysis for Lithium Inserted into Artificial Carbon Material

  • 오원춘
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권4호
    • /
    • pp.367-371
    • /
    • 2001
  • Lithium inserted into artificial carbon has been synthesized as a function of the Li concentration. The characteristics of these prepared compounds were determined from the studies using X-ray diffraction(XRD), solid nuclear magnetic resonance (NM R) spectrophotometric and differential scanning calorimeter(DSC) analysis. X-ray diffraction showed that lower stage intercalation compounds were formed with increasing Li concentration. In the case of the AG3, most compounds formed were of the stage 1 structure. Pure stage 1 structural defects of artificial graphite were not observed. 7Li-NMR data showed that bands are shifted toward higher frequencies with increasing lithium concentration; this is because non-occupied electron shells of Li increased in charge carrier density. Line widths of the Li inserted carbon compounds decreased slowly because of nonhomogeneous local magnetic order and the random electron spin direction for located Li between graphene layers. The enthalpy and entropy changes of the compounds can be obtained from the differential scanning calorimetric analysis results. From these results, it was found that exothermic and endothermic reactions of lithium inserted into artificial carbon are related to the thermal stability of lithium between artificial carbon graphene layers.

Removal of NOx using electron beam process with NaOH spraying

  • Shin, Jae Kyeong;Jo, Sang-Hee;Kim, Tae-Hun;Oh, Yong-Hwan;Yu, Seungho;Son, Youn-Suk;Kim, Tak-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.486-492
    • /
    • 2022
  • Nitrogen oxides (NOx; NO and NO2) are major air pollutants and can cause harmful effects on the human body. Electron Beam Flue Gas Treatment (EBFGT) is a technology that generates electrons with an energy of 0.5-1 MeV using electron accelerators and effectively processes exhaust gases. In this study, NOx was removed using an electron beam accelerator with spraying additives (NaOH and NH4OH). NO and NO2 were 100% and more than 94% removed, respectively, at an electron beam absorbed dose of 20 kGy and an additive concentration of 0.02 M (mol/L). In most cases, NOx was removed better with lower initial NOx concentrations and higher electron beam absorbed doses. As the irradiation strength (mA) of the electron beam increases, the probability of electron impact on the material accordingly rises, which may lead to increase removal efficiency. The results of the present study show that the continuous electron beam process using additives achieved more effective removal efficiency than either individual process (wet-scrubbing or EB irradiation only).

확산모델을 이용한 다중전자 전극반응에 대한 순환전위법의 전산모델링 (Computational Modeling of Cyclic Voltammetry on Multi-electron Electrode Reaction using Diffusion Model)

  • 조하나;윤도영
    • 전기화학회지
    • /
    • 제15권3호
    • /
    • pp.165-171
    • /
    • 2012
  • 본 연구에서는 전기화학계에서 중요한 다중전자의 이동이 수반되는 전극 반응에 대하여 순환전위법의 특성곡선을 모델링하여, MATLAB 프로그램으로 구현하였다. 전극주변의 전기화학 물질전달계에 대하여 반무한 확산모델의 경계조건을 설정하였고, Fick의 농도방정식은 유한차분법으로 전개하여 수치해를 구하였고, Butler-Volmer 식으로부터 계산된 농도값을 전류의 값으로 전환하였다. 본 연구에서 구현된 수치해는 기존의 실험치들과 합리적으로 설명하고 있었으며, 이를 근거로 다중전자 전기화학 반응계에서 반응메카니즘에 대한 전극반응속도 상수와 CV 주사속도 영향을 효과적으로 해석할 수 있었다.

구리${\cdot}$아연과 비교한 보리 엽록체의 광합성 기구에 미치는 수은 이온의 특이한 효과 (Mercury-Specific Effects on Photosynthetic apparatus of Barley Chloroplasts Compared with Copper and Zinc Ions)

  • 문병용;전현식
    • 한국환경과학회지
    • /
    • 제1권1호
    • /
    • pp.1.1-11
    • /
    • 1992
  • To find heavy metal-specific effects on the photosynthetic apparatus of higher plants, we investigated effects of $CuCl_2$, HgCl_2$ and $ZnCl_2$ on electron transport activity and chlorophyll fluorescence induction kinetics of chloroplasts isolated from barley seedlings. Effects on some related processes such as germination, growth and photosynthetic pigments of the test plants were also studied. Germination and growth rate were inhibited in a concentration-dependent manner by these metals. Mercury was shown to be the most potent inhibitor of germination, growth and biosynthesis of photosynthetic pigments of barley plants. In the inhibition of electron transport activity, quantum yield of PS II, and chlorophyll fluorescence induction kinetics of chloroplasts isolated from barley seedlings, mercury chloride showed more pronounced effects than other two metals. Contrary to the effects of other two metals, mercury chloride increased variable fluorescence significantly and abolished qE in the fluorescence induction kinetics from broken chloroplasts of barley seedlings. This increase in variable fluorescence is due to the inhibition of the electron transport chain after PS ll and the following dark reactions. The inhibition of qE could be attributed to the interruption of pH formation and do-epoxidation of violaxathin to zeaxanthin in thylakoids by mercury. This unique effect of mercury on chlorophyll fluorescence induction pattern could be used as a good indicator for testing the presence and/or the concentration of mercury in the samples contaminated with heavy metals.

  • PDF