Browse > Article
http://dx.doi.org/10.1016/j.net.2021.06.033

Removal of NOx using electron beam process with NaOH spraying  

Shin, Jae Kyeong (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Jo, Sang-Hee (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Kim, Tae-Hun (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Oh, Yong-Hwan (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Yu, Seungho (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Son, Youn-Suk (Department of Environmental Engineering, Pukyong National University)
Kim, Tak-Hyun (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Publication Information
Nuclear Engineering and Technology / v.54, no.2, 2022 , pp. 486-492 More about this Journal
Abstract
Nitrogen oxides (NOx; NO and NO2) are major air pollutants and can cause harmful effects on the human body. Electron Beam Flue Gas Treatment (EBFGT) is a technology that generates electrons with an energy of 0.5-1 MeV using electron accelerators and effectively processes exhaust gases. In this study, NOx was removed using an electron beam accelerator with spraying additives (NaOH and NH4OH). NO and NO2 were 100% and more than 94% removed, respectively, at an electron beam absorbed dose of 20 kGy and an additive concentration of 0.02 M (mol/L). In most cases, NOx was removed better with lower initial NOx concentrations and higher electron beam absorbed doses. As the irradiation strength (mA) of the electron beam increases, the probability of electron impact on the material accordingly rises, which may lead to increase removal efficiency. The results of the present study show that the continuous electron beam process using additives achieved more effective removal efficiency than either individual process (wet-scrubbing or EB irradiation only).
Keywords
Electron beam; $NO_x$; Additive; NaOH; $NH_4OH$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Seo, S. Jo, Y. Son, T. Kim, T. Kim, S. Yu, A preliminary study on effect of additive in the removal of NOx and SO2 by electron beam irradiation, Chem. Eng. J. 287 (2020) 124083.
2 M. Silindir, A.Y. Ozer, Sterilization methods and the comparison of E-beam sterilization with gamma radiation sterilization, Fabad J. Pharm. Sci. 34 (2009) 43-53.
3 A.A. Basfar, K.A. Mohamed, A.J. Al-Abduly, T.S. Al-Kuraiji, A.A. Al-Shahrani, Degradation of diazinon contaminated waters by ionizing radiation, Radiat. Phys. Chem. 76 (2007) 1474-1479.   DOI
4 J.-S. Chang, P.C. Looy, K. Nagai, T. Yoshioka, S. Aoki, A. Maezawa, Preliminary pilot plant tests of a corona discharge-electron beam hybrid combustion flue gas cleaning system, IEEE Trans. Ind. Appl. 32 (1996) 131-137.   DOI
5 A.A. Basfar, O.I. Fageeha, N. Kunnummal, A.G. Chmielewski, J. Licki, A. Pawelec, Z. Zimek, J. Warych, A review on electron beam flue gas treatment (EBFGT) as a multicomponent air pollution control technology, Nukleonika 55 (2010) 271-277.
6 M. Gauss, G. Myhre, I.S.A. Isaksen, V. Grewe, G. Pitari, O. Wild, W.J. Collins, F.J. Dentener, K. Ellingsen, L.K. Gohar, D.A. Hauglustaine, D. Iachetti, J.-F. Lamarque, E. Mancini, L.J. Mickley, M.J. Prather, J.A. Pyle, M.G. Sanderson, K.P. Shine, D.S. Stevenson, K. Sudo, S. Szopa, G. Zeng, Radiative forcing since preindustrial times due to ozone change in the troposphere and the lower stratosphere, Atmos. Chem. Phys. 6 (2006) 575-599.   DOI
7 R.J. Woods, A.K. Pikaev, Applied Radiation Chemistry: Radiation Processing, John Wiley & Sons, Inc., New York, USA, 1994.
8 A. Pourmohammadbagher, E. Jamshidi, H. Ale-Ebrahim, B. Dabir, M. Mehrabani-Zeinabad, Simultaneous removal of gaseous pollutants with a novel swirl wet scrubber, Chem. Eng. Process 50 (2011) 773-779.   DOI
9 N.D. Hutson, R. Krzyzynska, R.K. Srivastava, Simultaneous removal of SO2, NOx, and Hg from coal flue gas using a NaClO2-enhanced wet scrubber, Ind. Eng. Chem. Res. 47 (2008) 5825-5831.   DOI
10 S. Wang, Q. Zhang, G. Zhang, Z. Wang, P. Zhu, Effects of sintering flue gas properties on simultaneous removal of SO2 and NO by ammonia-Fe(II)EDTA absorption, J. Energy Inst. 90 (2017) 522-527.   DOI
11 G. Busca, L. Lietti, G. Ramis, F. Berti, Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: a review, Appl. Catal. B Environ. 18 (1998) 1-36.   DOI
12 I. Calinescu, D. Martin, A. Chmielewski, D. lghigeanu, E-Beam SO2 and NOx removal from flue gases in the presence of fine water droplets, Radiat. Phys. Chem. 85 (2013) 130-138.   DOI
13 E. Zwolinska, V. Gogulancea, Y. Sun, V. Lavric, A. Chmielewski, A kinetic sensitivity analysis for the SO2 and NOx removal using the electron beam technology, Radiat. Phys. Chem. 138 (2017) 29-36.   DOI
14 A.G. Chmielewski, E. Zwolinska, J. Licki, Y. Sun, Z. Zimek, S. Bulka, A hybrid plasma-chemical system for high-NOx flue gas treatment, Radiat. Phys. Chem. 144 (2018) 1-7.   DOI
15 G. Cheng, C. Zhang, Desulfurization and denitrification technologies of coal-fired flue gas, Pol. J. Environ. Stud. 27 (2018) 481-489.   DOI
16 H.-W. Park, S. Uhm, Various technologies for simultaneous removal of NOx and SO2 from flue gas, Applied Chemistry for Engineering 28 (2017) 607-618.   DOI
17 A.A. Basfar, O.I. Fageeha, N. Kunnummal, S. Al-Ghamdi, A.G. Chmielewski, J.A. Pawelec, B. Tyminski, Z. Zimek, Electron beam flue gas treatment (EBFGT) technology for simultaneous removal of SO2 and NOx from combustion of liquid fuels, Fuel 87 (2008) 1446-1452.   DOI
18 J. Park, J. Ahn, K. Kim, Y. Son, Historic and futuristic review of electron beam technology for the treatment of SO2 and NOx in flue gas, Chem. Eng. J. 355 (2019) 351-366.   DOI
19 J. Kim, Y. Kim, B. Han, Electron-beam flue-gas treatment plant for thermal power station "Sviloza" AD in Bulgaria, J. Kor. Phys. Soc. 59 (2011) 3494-3498.   DOI
20 R. Mehnert, Review of industrial applications of electron accelerators, Nucl. Instrum. Methods Phys. Res. B 13 (1996) 81-87.   DOI
21 L. Zhao, Y. Sun, A.G. Chmielewski, A. Pawelec, S. Bulka, NO oxidation with NaClO, NaClO2, and NaClO3 solution using electron beam and a one stage absorption system, Plasma Chem. Plasma Process. 40 (2020) 433-447.   DOI
22 V.B. Men'kin, I.E. Makarov, A.K. Pikaev, Pulse radiolysis study of reaction rates of OH and O- radicals with ammonia in aqueous solutions, Radiation Chemistry 22 (1989) 333-336.
23 E. Tan, S. Unal, A. Dogan, E. Letournel, F. Pellizzari, New "wet type" electron beam flue gas treatment pilot plant, Radiat. Phys. Chem. 119 (2016) 109-115.   DOI
24 O. Tokunaga, H. Namba, K. Hirota, Experiments on chemical reactions in electron-beam-induced NOx/SO2 removal, Non-Thermal Plasma Techniques for Pollution Control 34 (1993) 55-62.
25 J. McKeown, Radiation processing using electron linacs, IEEE Trans. Nucl. Sci. 32 (1985) 3292-3296. Ns.   DOI
26 N.W. Frank, Introduction and historical review of electron beam processing for environmental pollution control, Radiat. Phys. Chem. 45 (1993) 989-1002.   DOI
27 A.G. Chmielewski, J. Licki, A. Pawelec, B. Tyminski, Z. Zimek, Operational experience of the industrial plant for electron beam flue gas treatment, Radiat. Phys. Chem. 71 (2004) 439-442.
28 E. Grusell, On the definition of absorbed dose, Radiat. Phys. Chem. 107 (2015) 131-135.   DOI
29 J.C. Person, D.O. Ham, Removal of SO2 and NOx from stack gases by electron beam irradiation, Radiat. Phys. Chem. 31 (1988) 1-8.
30 N.L.K. Thiher, S.M. Schissel, J.L.P. Jessop, Analysis of methods to determine G-values of monomers polymerized via ionizing radiation, Radiat. Phys. Chem. 165 (2019) 108394.   DOI
31 F. Busi, M. D'Angelantonio, Q.G. Mulazzani, O. Tubertini, Radiation induced NOx/SO2 emission control for industrial and power plants flue gas, Radiat. Phys. Chem. 31 (1988) 101-108.
32 B.J. Mao, Process of Flue Gas Desulphuration with Electron Beam Irradiation in china, IAEA-TECDOC-1473, Radiation Treatment of Gaseous and Liquid Effluents for Contaminant Removal, 2005, pp. 45-51.
33 M.R. Cleland, R.A. Galloway, Ozone generation in air during electron beam processing, Physics Procedia 66 (2015) 586-594.   DOI
34 T.B. Petrova, G.M. Petrov, M.F. Wolford, J.L. Giuliani, H.D. Ladouceour, F. Hegeler, M.C. Myers, J.D. Sethian, Effective NOx remediation from a surrogate flue gas using the US NRL Electra electron beam facility, Phys. Plasmas 24 (2017), 023501.   DOI
35 M. Siwek, T. Edgecock, Application of electron beam water radiolysis for sewage sludge treatment-a review, Environ. Sci. Pollut. Res. 27 (2020) 42424-42448.   DOI
36 Y. Son, K. Kim, K. Kim, J. Kim, Ammonia decomposition using electron beam, Plasma Chem. Plasma Process. 33 (2013) 617-629.   DOI
37 M.F. Wolford, M.C. Myers, F. Hegeler, J.D. Sethian, NOx removal with multiple pulsed electron beam free of catalysts or reagents, Phys. Chem. Chem. Phys. 15 (2013) 4422-4427.   DOI
38 A.G. Chmielewski, Industrial applications of electron beam flue gas treatment-from laboratory to the practice, Radiat. Phys. Chem. 76 (2007) 1480-1484.   DOI
39 A.G. Chmielewski, Electron accelerators for environmental protection, Reviews of accelerator science and technology 4 (2011) 147-159.   DOI
40 Y. Doi, I. Nakanishi, Y. Konno, Operational experience of a commercial scale plant of electron beam purification of flue gas, Radiat. Phys. Chem. 57 (2000) 495-499.   DOI
41 S. Jo, K. Kim, S. Seo, T. Kim, S. Yu, T. Kim, Y. Son, A study on additives to improve electron beam technology for NOx and SO2 reduction, Radiat. Phys. Chem. 183 (2021) 109397.   DOI
42 A.G. Chmielewski, J. Licki, Electron beam flue gas treatment process for purification of exhaust gases with high SO2 concentrations, Nukleonika 53 (2008) 61-66.
43 C.M. Deeley, A basic interpretation of the technical language of radiation processing, Radiat. Phys. Chem. 71 (2004) 503-507.   DOI
44 A.G. Chmielewski, Y. Sun, Z. Zimek, S. Bulka, J. Licki, Mechanism of NOx removal by electron beam process in the presence of scavengers, Radiat. Phys. Chem. 65 (2002) 397-403.   DOI
45 J. Choi, H. Lee, J. Kim, K. Lee, J. Lee, S. Seo, K. Kang, M. Byun, Controlling the radiation degradation of carboxymethylcellulose solution, Polym. Degrad. Stabil. 93 (2008) 310-315.   DOI