• Title/Summary/Keyword: electromagnetic wave

Search Result 1,622, Processing Time 0.024 seconds

A study on the Measurement of Soil Water Concentration by Time Domain Reflectometry (TDR(Time Domain Reflectometry)을 이용한 토양수농도 측정에 관한 연구)

  • Park, Jae-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.2
    • /
    • pp.123-132
    • /
    • 1998
  • Monitoring solute transport has been known to be difficult especially for the unsaturated soil. The object of this study is to investigate the TDR application to monitoring solute concentration in the vadose zone. The TDR calibration test was conducted for soil samples with various water contents and concentrations. The voltage attenuation of electromagnetic wave of TDR was used to estimate the bulk electrical conductivity of a soil. The relationship between the bulk soil electrical conductivity and the solute concentration was assumed to be linear at a constant volumetric soil water content. In this study four proposed relationships were compared using data obtained from KCI solution at three different concentrations. Relationships given by Topp, Daltaon, Yanuka showed the linearity between the bulk soil electrical conductivity and the solute concentration, which were more pronounced than Zegelin's. The three relationships were found to be useful to measure the solute concentration in the vadose zone. In addition, TDR method was proven to be a viable technique in monitoring solute transport through unsaturated soils in transient flow condition.

  • PDF

Comparison of Magnetocardiogram Parameters Between a Ischemic Heart Disease Group and Control Group (정상군 및 허혈성 심질환 환자군에서의 심자도 파라미터 비교)

  • Park, Jong-Duk;Huh, Young;Jin, Seung-oh;Jeon, Sung-chae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.11
    • /
    • pp.680-688
    • /
    • 2005
  • The electrical current generated by heart creates not only electric potential but also a magnetic field. We have observed electrophysiological phenomena of the heart by measuring components of magnetocardiogram(MCG) using 61 channel superconducting quantum interference device(SQUD) system. We have analyzed the possibility and characteristics of MCG parameters for diagnosis of ischemic heart disease. A technique for automatic analysis of MCG signals in time domain was developed. The methods for detecting the position, the interval, the amplitude ratio, and the direction of single current dipole were examined in the MCG wave. The position and interval parameters were obtained by calculating the gradients of a envelope curve which could be formed by the difference between the maximum and minimum envelope of multi-channel MCG signals. We show some differences of the frequency contour map between the normal MCG and the abnormal (ischemic heart disease) MCG. The direction of single current dipole can be defined by rotating the magnetic field according to Biot-Savart's law at each point of MCG signals. In this study, we have examined the direction of single current dipole from searching for the centroids of positive and negative magnetic fields. The amplitude ratio parameters for measuring 57 deviation consisted of A$_{T}$/A$_{R}$ and other ratios. and We developed a new analysis method, which is based on the frequency contour map of electromagnetic field. Using theses parameters, we founded significant differences between normal subjects and ischemic patients in some parameters.

A Study on Effects of the Cure Pressure for the Improvement of the Electrical Performance of the Sandwich Type Radome (샌드위치형 레이돔의 전기적 성능개선 위한 성형압력 영향성 연구)

  • Lee, Sang-Min;Seo, Hyun-Soo;Hong, Jun-Pyo
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.3
    • /
    • pp.299-312
    • /
    • 2015
  • Purpose: This paper analyzes the phenomenon on the degradation of the electrical performance by the pressure in the manufacturing process of sandwich type radomes. Methods: This paper consists of two steps to analyze the relation between the electrical performance and the pressure. First, the thickness of the core of the flat panels which were fabricated with different pressure was measured with the microscope, and then the electrical performance of the flat panels was analyzed with simulation and experiment. Based on the results of the electrical performance and the measured thickness with respect to the flat panels, the relation between the electrical performance and the applied pressure in the manufacturing process was analyzed. Results: The simulated and measured results with respect to the flat panel shows that the high pressure results in the nonuniform thickness of the core, which is applied to the radome fabrication. As a result, the degradation of the electrical performance occurs because the unintended scattered field is generated as the electromagnetic wave transmits (or impinges upon) the radome. Furthermore, we observed that the electrical performance of both the flat panel and the radome got worse as the high pressure was applied. Conclusion: Through simulation and experiment, therefore, it is demonstrated that for the high pressure in the manufacturing process the nonuniform thickness of the core increases and results in the degradation of the electrical performance of the radome.

Development of Portable Memory Type Radiation Alarm Monitor (휴대용 메모리형 방사선 경보장치 개발)

  • Son, Jung-Kwon;Lee, Myung-Chan;Song, Myung-Jae
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.4
    • /
    • pp.263-272
    • /
    • 1997
  • A Radiation Alarm Monitor has been developed and manufactured in order to protect radiation workers from over-exposure. A visual and audible alarm system has been attached to initiate evacuation when accident occurs such as an unexpected change of radiation level or an over-exposure. The Radiation Alarm Monitor installed with microprocessor can record the information of radiation field change between 90 min. before the alarm and 30 min. after the alarm and also provide the data to an IBM compatible computer to analyze the accidents and to set a counterplan. It features a wide detection range of radiation field(10 mR/h-100 R/h), radiation field data storage, portability, high precision (${\pm}5%$) due to self-calibration function, and adaption of a powerful alarm system. According to ANSI N42.17A, the most stringent test standards, performance tests were carried out under various conditions of temperature, humidity, vibration, and electromagnetic wave hindrance at Korea Research Institute of Standards & Science (KRISS). As a result, the Radiation Alarm Monitor passed all tests.

  • PDF

Development of Jelly-Type Simulating Polymer Based Human Tissue for Research on Hyperthermia by High Frequency Magnetic Field (고주파 자계 온열요법 연구를 위한 젤리형의 고분자계 모의인체)

  • Kim, Oh-Young;Choi, Chang-Young;Ma, Sung-Jae;Lim, Sang-Mung;Seo, Ki-Taek
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.572-575
    • /
    • 2006
  • In this work, a variety of polymer based jelly phantoms suitable for the hyperthermia operations to human organs was synthesized in order to confirm the possibility of auxiliary cancer therapy. Specifically, using an appropriate material composition including polyethylene, Jelly phantoms for brain was prepared and characterized their electrical properties suitable for the monitoring the effect of electromagnetic wave from code division multiple access (CDMA) and personal communication service (PCS) on the human body. In the future, after injection of ferromagnetic nanoparticle into the jelly phantoms, new approach to propose the cancer therapy can be anticipated by monitoring the degree of temperature rise in human body using the photograph of Infrared camera.

The Brain Temperature Change after the Use of Mobile Phone (휴대전화 사용 후 뇌 온도의 변화)

  • Koo, Eun-Jung;Lee, Il-Keun;Kong, Hea-Won
    • Annals of Clinical Neurophysiology
    • /
    • v.5 no.1
    • /
    • pp.16-20
    • /
    • 2003
  • Background: Mobile phone has become a very popular device used in everyday our lives. However, the possible hazard to human body such as brain tumor has been proposed intermittently. This unwanted possibility was calmed down due to the absence of definite evidence of hazard. This study was performed to see the effect of mobile phone use on the brain temperature. Methods: In 20 volunteers, we performed 4 steps of temperature measuring procedure. Four steps are pre-use (S1, basal state), wire-phone (S2, conventional telephone), PCS phone (S3, using 1,750~1,900 MHz), cellular phone (S4, using 820 MHz) states. Brain temperatures were measured by radiothermometer at 10 sites (5 sites in each hemisphere) of the brain after 5minutes of telecommunication through the phones. The final data were compared using paired t-test. Results: In PCS phone user group (Average; $35.73708^{\circ}C$), brain temperature decreased (with statistical significance, p<0.05), compared to those of non-user group (Average; $35.9527^{\circ}C$) or conventional wire phone user group. In cellular phone user group (Average; $35.82155^{\circ}C$), brain temperature decreased slightly (without statistical significance, p>0.05) compared to those of non-user group (Average; $35.9527^{\circ}C$) or conventional wire phone user group (Average; $35.922^{\circ}C$). The temperature change was not limited to the mobile phone applied side but on both hemisphere of the brain. Conclusion: In conclusion, mobile phone (especially PCS phone) decreased brain temperature in both hemispheres without side-to-side temperature difference. In addition, this study suggests possibility of radiothermometer application to the study of electromagnetic wave effect and protection method research in the future.

  • PDF

A Study on the Direction of Resident Acceptability for Photovoltaic System in Rural region - A Case of the rural village in Munback-myeon, Jincheon-gun, Chungbuk - (농촌지역 태양광발전 주민수용성 방향에 관한 조사 분석 연구 - 충북 진천군 문백면 농촌마을을 중심으로 -)

  • Park, Mi-Lan;Shin, Seung-Wook;Oh, Si-Doek;Kang, Soo-Hyun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.21 no.3
    • /
    • pp.77-84
    • /
    • 2019
  • In this study, we classified and analyzed the type and cause of resident conflicts and made a solution at side of resident through resident survey study for research subjects located at photovoltaic system will be installed or not. The factors of resident conflicts based on news media release from 2006 to 2018 were classified to four types such as economic, environmental, technological and procedural factors. According to the news analysis, the types and proportion of resident conflicts in the photovoltaic system projects showed 33% of economic factors, 32% of environmental factor, 21% of technological factor and 14% of procedural factor. This news analysis may suggest that it is very important residents to share the economic benefits as well as to ensure the fairness of the procedures for carrying out the project based on transparent information disclosure during the business promotion and profit distribution stages. We conducted the poll survey in the rural towns where photovoltaic system will be installed or not. The poll survey results showed that (i) there is quite difference in agreement rate and other recognition for sensitive matters such as profit distribution, environmental and technological factors whether photovoltaic system will be installed or not, (ii) the resident conflict regarding the photovoltaic system installation can reduce through direct involvement of residents process. To solve these resident conflicts, the local governments should mainly effort and consider the supporting technologies and consults to solve clearly resident conflicts. In addition, it has to advertise the safety of photovoltaic systems regarding electromagnetic wave which were within the range of scientifically harmless to the human body.

Analysis of Sea Clutter Removal Capability in a Weather Radar Based on a Vertical Phased Array Antenna (수직 위상 배열 안테나 기반 기상 레이다에서의 해수면 클러터 제거 성능 분석)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.155-161
    • /
    • 2018
  • Many short range weather radars with the low elevation search capability are needed for analysis and prediction of unusual weather changes or rainfall phenomena which occurs regionally. However, due to the characteristics of low elevation electromagnetic wave beam, it is highly probable that the received weather signals of these radars are contaminated by the ground and sea clutter. Since most of ground clutter appears around the very narrow low Doppler frequency region, it is somewhat easy to separate. However, the sea clutter removal is very difficult since it can occupy the broad Doppler frequency region according to weather conditions. Therefore, in this paper, the sea clutter removal capability is analyzed for a phased array weather radar which use vertical array elements for electronic elevation beam steering. Also, it is shown that the sea clutter removal can be achieved appropriately using the receiver beam forming technology in a phased array antenna.

Analysis of Phase Noise Effects in a Short Range Weather Radar (단거리 기상 레이다에서의 위상 잡음 영향 분석)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.8
    • /
    • pp.1090-1098
    • /
    • 2018
  • Many short range weather radars with the low elevation search capability are needed for analysis and prediction of unusual weather changes or rainfall phenomena which occurs regionally. However, due to the characteristics of low elevation electromagnetic wave beam, it is highly probable that the received weather signals of these radars are seriously contaminated by the ground clutter. Therefore, the filter removing low Doppler frequency band is generally used to mitigate this problem. However, the phase noise in a radar system may limit the removal of the strong clutter and this may cause serious problems in estimating weather parameters because of the remaining clutter. Therefore, in this paper, the characteristics of phase noise in a radar system are investigated and the effects of the system phase noise are analyzed in the improvement of signal to clutter ratio for the strong clutter environment such as a short and low-elevated weather radar.

Rapid 2.5D Small-Loop EM Modeling by Extended Born Approximation (확장 Born 근사에 의한 소형루프 전자탐사법의 신속한 2.5차원 모델링)

  • Cho, In-Ky;Song, Sung-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.308-313
    • /
    • 2007
  • The small-loop electromagnetic technique has been used successfully for many geophysical qualitative investigations, particularly for shallow engineering and environmental surveys. Recently, various geophysical imaging methods based on numerical modeling and inversion have been tried in order to get more quantitative subsurface structure. However, conventional 2.5D small loop EM modeling takes a lot of time because responses should be calculated for several wave numbers and transformed into space domain. In this study, we developed a 2.5D HCP small loop EM modeling algorithm using extended Born approximation, which does not require transformation. Also, we checked its validity by comparison with other numerical results.