• 제목/요약/키워드: electroless Cu plating

Search Result 126, Processing Time 0.027 seconds

Effect of Plating Condition and Surface on Electroless Co-Cu-P Alloy Plating Rate (무전해 Co-Cu-P 도금속도에 미치는 도금 조건과 표면상태의 영향)

  • Oh, L.S.
    • Journal of Power System Engineering
    • /
    • v.4 no.2
    • /
    • pp.31-39
    • /
    • 2000
  • Relationships between the plating condition and the plating rate of the deposition film for the electroless plating of Co-Cu-P alloy were discussed in this report. The result obtained from this experiment were summarized as follow ; The optimum bath composition was consisted of 0.8 ppm thiourea as a stabilizing agent. Composition of the deposit was found to be uniform after two hours of electroless plating. Plating rates of nickel-catalytic surface and zincate-catalytic surface were found to be very closely equal, but the plating time of nickel-catalytic surface took longer than that of the zincated-catalytic surface.

  • PDF

Study on Improvement of Thermal Stability of Dendrite-shape Copper Particles by Electroless Silver Plating (Dendrite 형상 구리 입자의 무전해 은 도금에 의한 열적 안정성 향상에 관한 연구)

  • Hwang, In-Seong;Nam, Kwang Hyun;Chung, Dae-won
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.574-580
    • /
    • 2022
  • While in the process of electroless plating of dendrite-shape copper with silver, various silver-coated copper (Ag@Cu) particles were prepared by using both displacement plating and reducing electroless plating. The physicochemical properties of Ag@Cu particles were analyzed by scanning electron microscope- energy-dispersive X-ray spectroscopy (SEM-EDS), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Brunauer-Emmett-Teller analysis (BET), and it was confirmed that the silver coated by the reducing electroless plating was formed as nano-particles on the copper surface. Ag@Cu particles were compounded with an epoxy resin to prepare a conductive film, and its thermal stability was evaluated. We investigated the effect of the difference between the displacement plating and reducing electroless plating on the initial resistance and thermal stability of conductive films.

Electroless Plated Copper Thin Film for Metallization on Printed Circuit Board : Neutral Process (인쇄회로기판상의 금속 배선을 위한 구리 도금막 형성 : 무전해 중성공정)

  • Cho, Yang-Rae;Lee, Youn-Seoung;Rha, Sa-Kyun
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.661-665
    • /
    • 2013
  • We investigated the characteristics of electroless plated Cu films on screen printed Ag/Anodized Al substrate. Cu plating was attempted using neutral electroless plating processes to minimize damage of the anodized Al substrate; this method used sodium hypophosphite instead of formaldehyde as a reducing agent. The basic electroless solution consisted of $CuSO_4{\cdot}5H_2O$ as the main metal source, $NaH_2PO_2{\cdot}H_2O$ as the reducing agent, $C_6H_5Na_3O_7{\cdot}2H_2O$ and $NH_4Cl$ as the complex agents, and $NiSO_4{\cdot}6H_2O$ as the catalyser for the oxidation of the reducing agent, dissolved in deionized water. The pH of the Cu plating solutions was adjusted using $NH_4OH$. According to the variation of pH in the range of 6.5~8, the electroless plated Cu films were coated on screen printed Ag pattern/anodized Al/Al at $70^{\circ}C$. We investigated the surface morphology change of the Cu films using FE-SEM (Field Emission Scanning Electron Microscopy). The chemical composition of the Cu film was determined using XPS (X-ray Photoelectron Spectroscopy). The crystal structures of the Cu films were investigated using XRD (X-ray Diffraction). Using electroless plating at pH 7, the structures of the plated Cu-rich films were typical fcc-Cu; however, a slight Ni component was co-deposited. Finally, we found that the formation of Cu film plated selectively on PCB without any lithography is possible using a neutral electroless plating process.

Fabrication of Sn-Cu Bump using Electroless Plating Method (무전해 도금법을 이용한 Sn-Cu 범프 형성에 관한 연구)

  • Moon, Yun-Sung;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.2
    • /
    • pp.17-21
    • /
    • 2008
  • The electroless plating of copper and tin were investigated for the fabrication of Sn-Cu bump. Copper and tin were electroless plated in series on $20{\mu}m$ diameter copper via to form approximately $10{\mu}m$ height bump. In electroless copper plating, acid cleaning and stabilizer addition promoted the selectivity of bath on the copper via. In electroless tin plating, the coating thickness of tin was less uniform relative to that of electroless copper, however the size of Sn-Cu bump were uniform after reflow process.

  • PDF

Novel Environmentally Benign and Low-Cost Pd-free Electroless Plating Method Using Ag Nanosol as an Activator

  • Kim, Jun Hong;Oh, Joo Young;Song, Shin Ae;Kim, Kiyoung;Lim, Sung Nam
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.215-221
    • /
    • 2017
  • The electroless plating process largely consists of substrate cleaning, seed formation (activator formation), and electroless plating. The most widely used activator in the seed formation step is Pd, and Sn ions are used to facilitate the formation of this Pd seed layer. This is problematic because the Sn ions interfere with the reduction of Cu ions during electroless plating; thus, the Sn ions must be removed by a hydrochloric acid cleaning process. This method is also expensive due to the use of Pd. In this study, Cu electroless plating was performed by forming a seed layer using a silver nanosol instead of Pd and Sn. The effects of the Ag nanosol concentration in the pretreatment solution and the pretreatment time on the thickness and surface morphology of the Cu layer were investigated. The degrees of adhesion to the substrate were similar for the electroless-plated Cu layers formed by conventional Pd activation and those formed by the Ag nanosol.

A Study on Reusing of Electroless Ni-Cu-P Waste Solution (無電解 Ni-Cu-P 廢 도금액의 재사용에 관한 연구)

  • 오이식
    • Resources Recycling
    • /
    • v.10 no.2
    • /
    • pp.27-33
    • /
    • 2001
  • Reusing of electroless Ni-Cu-P waste solution was investigated in the plating time, plating rate, solution composion and deposit. Plating time of nickel-catalytic surface took longer than that of zincated-catalytic surface. Initial solution with 50f) waste solution additive at batch type was possible to reusing of waste solution. Plating time of initial solution at continuous type took longer 10 times over than that of batch type. Plating time of 50% waste solution additive at continuous type took longer 3.7 times over than that of batch type. Component change of nickel-copper for electroless deposition was greatly affected by depolited inferiority and larger decreased plating rate.

  • PDF

A Study on Reusing of Electroless Ni-Cu-B Waste Solution (무전해 Ni-Cu-B 폐 도금액의 재사용에 관한 연구)

  • Oh Iee-Sik;Bai Young-Han
    • Resources Recycling
    • /
    • v.12 no.1
    • /
    • pp.18-24
    • /
    • 2003
  • Reusing of electroless Ni-Cu-B waste solution was investigated in the plating time, plating rate, solution composition and deposit. Plating time of nickel-catalytic surface took longer than that of zincated-catalytic surface. Initial solution with 40% waste solution additive at batch type was possible to reusing of waste solution. Plating time of initial solution at continuous type took longer 6 times over than that of batch type. Plating time of 40% waste solution additive at continuous type took longer 2 times over than that of batch type. Component change of nickel-copper for electroless deposition was greatly affected by deposited inferiority and larger decreased plating rate.

Effect of Plating Condition and Plating Rate on the Magnetic Properties of Electroless Ni-Cu-P Deposits (무전해 Ni-Cu-P 도금층의 자성에 미치는 도금조건과 도금속도의 영향)

  • Oh, I.S.;Lee, T.H.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.58-66
    • /
    • 2006
  • The effect of bath composition, plating condition and plating rate on the magnetic properties of electroless Ni-Cu-P deposits were investigated. With increasing $CuSO_4$ concentration in the bath, plating rate increased, while the Br value of deposits decreased Sharply. Plating rate increased up to 34% with the addition of 200ppm of NaF and 0.8ppm of Thiourea to the bath. Plating reaction had been ceased by the increase of pH above 11.3, bath temperature higher than $90^{\circ}C$ and under $70^{\circ}C$. The Br value of deposit was uniform with various concentration of complexing agent (Sodium citrate, Ethylenediamine) in the bath. The Br value of deposit was almost equal to that found by the addition of stabilizer(Thiourea) and accelerator(NaF). The Br value of deposit was uniform in plating time(120 min) and heat treatment temperature(below $200^{\circ}C$), and were confirmed to have adequate bath stability for practical use.

  • PDF

Effect of Plating Condition and Plating Rate on the Magnetic Properties of Electroless Co-Cu-P Deposits (무전해 Co-Cu-P 도금층의 자성에 미치는 도금조건과 도금속도의 영향)

  • Oh, I.S.;Park, S.D.
    • Journal of Power System Engineering
    • /
    • v.8 no.3
    • /
    • pp.36-43
    • /
    • 2004
  • The effect of bath composition, plating condition and plating rate on the magnetic property of electroless Co-Cu-P deposits were investigated. With increasing $CuCl_2$ concentration in the bath, plating rate increased, while the Br value of deposit decreased sharply. Deposited surface were inferiority by the increase pH above 10.5, bath temperature higher than $80^{\circ}C$. Plating reaction had been ceased by the increase of pH above 11, bath temperature higher than $90^{\circ}C$ and under $40^{\circ}C$. The Br value of deposit was uniform with various concentration of complexing agent(sodium citrate) in the bath. The Br value of deposit was almost equal to that found by the addition of stabilizer (thiourea) and accelerator(NaF). The Br value of deposit was uniform in plating time(20min) and heat treatment temperature(below $200^{\circ}C$), and were confirmed to have adequate bath stability for practical use.

  • PDF

Fabrication of the Diffusion Barrier for Bus Electrode of Plasma Display by Electroless Ni-B Plating (무전해 Ni-B 도금을 이용한 플라즈마 디스플레이 버스 전극의 확산 방지막 제조)

  • Choi, Jae-Woong;Hong, Seok-Jun;Lee, Hee-Yeol;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • v.13 no.2
    • /
    • pp.101-105
    • /
    • 2003
  • In this study, we have investigated the availability of the electroless Ni-B plating for a diffusion barrier of the bus electrode. The Ni-B layer of 1$\beta$: thick was electroless deposited on the electroplated Cu bus electrode for AC plasma display. The layer was to encapsulate Cu bus electrode to prevent from its oxidation and to serve as a diffusion barrier against Cu contamination of the transparent dielectric layer in AC plasma display. The microstructure of the as-plated barrier layer was made of an amorphous phase and the structure was converted to crystalline at about 30$0^{\circ}C$. The concentration of boron was about 5∼6 wt.% in the electroless Ni-B deposit regardless of DMAB concentration. The electroless Ni-B deposit was coated on the surface of the electroplated Cu bus electrode uniformly. And the electroless Ni-B plating was found to be an appropriate process to form the diffusion barrier.