Browse > Article
http://dx.doi.org/10.14478/ace.2022.1098

Study on Improvement of Thermal Stability of Dendrite-shape Copper Particles by Electroless Silver Plating  

Hwang, In-Seong (Department of Polymer Engineering, Suwon University)
Nam, Kwang Hyun (Mazal Co., Ltd)
Chung, Dae-won (Department of Polymer Engineering, Suwon University)
Publication Information
Applied Chemistry for Engineering / v.33, no.6, 2022 , pp. 574-580 More about this Journal
Abstract
While in the process of electroless plating of dendrite-shape copper with silver, various silver-coated copper (Ag@Cu) particles were prepared by using both displacement plating and reducing electroless plating. The physicochemical properties of Ag@Cu particles were analyzed by scanning electron microscope- energy-dispersive X-ray spectroscopy (SEM-EDS), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Brunauer-Emmett-Teller analysis (BET), and it was confirmed that the silver coated by the reducing electroless plating was formed as nano-particles on the copper surface. Ag@Cu particles were compounded with an epoxy resin to prepare a conductive film, and its thermal stability was evaluated. We investigated the effect of the difference between the displacement plating and reducing electroless plating on the initial resistance and thermal stability of conductive films.
Keywords
Silver-coated copper; Electroless plating; Conductive film; Thermal stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Sudagar, J. Lian, and W. Sha, Electroless nickel, alloy, composite and nano coatings - A critical review, J. Alloys. Compd., 571, 183-204 (2013).   DOI
2 S. Z. Mousavi, and M. Pourabdoli, Silver-coated copper particles as a new raw material for manufacturing electrical contacts, Microelectron. Reliab., 134, 114554 (2022).   DOI
3 X. Zhu, L. Hu, and M. Dong, Synthesis and characterization of silver-coated copper powder layer, Key Eng. Mater., 512-515, 141-146 (2012).   DOI
4 O. Guler, u. Alver, and T. Varol, Fabrication and characterization of novel layered materials produced by electroless plating and hot pressing, J. Alloys. Compd., 835, 155278 (2020).   DOI
5 K. S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, and C. P. Wong, Thermal behavior of silver nanoparticles for low-temperature interconnect applications, J. Electron. Mater., 34, 168-175 (2005).   DOI
6 S. Magdassi, M. Grouchko, O. Berezin, and A. Kamyshny, Triggering the Sintering of Silver Nanoparticles at Room Temperature, ACS Nano, 4, 1943-1948 (2010).   DOI
7 M. Erfanmanesh, R. Shoja-Razavi, H. Abdollah-Pour, and H. Mohammadian-Semnani, Influence of using electroless Ni-P coated WC-Co powder on laser cladding of stainless steel, Surf. Coat. Technol., 348, 41-54 (2018).   DOI
8 R. Aradhana, S. Mohanty, and S. K. Nayak, A review on epoxy-based electrically conductive adhesives, Int. J. Adhes. Adhes., 99, 102596 (2020).   DOI
9 A. S. Cebrian, F. Klunker, and M. Zogg, Simulation of the Cure of Paste adhesives by induction heating, J. Compos. Mater., 48, 1459-1474 (2013).   DOI
10 W. Lin, X. Xi, and C. Yu, Research of silver plating nano-graphite filled conductive adhesive, Synth. Met., 159, 619-624 (2009).   DOI
11 T. Eliades, C. Gioka, G. Eliades, and M. Makou, Enamel surface roughness following debonding using two resin grinding methods, Eur. J. Orthod., 26, 333-338 (2004).   DOI
12 M. Montazer, and V. Allahyarzadeh, Electroless Plating of Silver Nanoparticles/Nanolayer on Polyester Fabric Using AgNO3/NaOH and Ammonia, Ind. Eng. Chem. Res., 52, 8436-8444 (2013).   DOI
13 Y. S. Lin, and S. S. Chiu, Effects of oxidation and particle shape on critical volume fractions of silver-coated copper powders in conductive adhesives for microelectronic applications, Polym. Eng. Sci., 44, 2075-2082 (2004).   DOI
14 M. C. Biesinger, L. W. M. Lau, A. R. Gerson, and R. S. C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn, Appl. Surf. Sci., 257, 887-898 (2010).   DOI
15 D. S. Jung, H. M. Lee, Y. C. Kang, and S. B. Park, Air-stable silver-coated copper particles of sub-micrometer size, J. Colloid Interface Sci., 364, 574-581 (2011).   DOI
16 E. M. Sherif, and S. M. Park, Inhibition of copper corrosion in 3.0% NaCl solution by N-phenyl-1,4-phenylenediamine, J. Electrochem. Soc., 152, B428-B433 (2005).   DOI
17 Y. S. Tan, M. P. Srinivasan, S. O. Pehkonen, and S. Y. M. Chooi, Effects of ring substituents on the protective properties of self-assembled benzenethiols on copper, Corros. Sci., 48, 840-862 (2006).   DOI
18 Y. S. Lin, and S. S. Chiu, Electrical properties of copper-filled electrically conductive adhesives and pressure-dependent conduction behavior of copper particles, J. Adhes. Sci. Technol., 22, 1673-1697 (2008).   DOI
19 X. G. Cao, and H. Y. Zhang, Preparation of silver-coated copper powder and its oxidation resistance research, Powder Technol., 226, 53-56 (2012).   DOI
20 L. Bois, F. Chassagneux, C. Desroches, Y. Battie, N. Destouches, N. Gilon, S. Parola, and O. Stephan, Electroless growth of silver nanoparticles into mesostructured silica block copolymer films, Langmuir, 26, 8729-8736 (2010).   DOI
21 H. Daisuke, K. Kota, and O. Akira, Reducing electroless silver plating solution and reducing electroless silver plating method, US Patent 20140242288 A1 (2014).
22 Y. S. Park, C. Y. An, P. K. Kannan, N. Seo, K. Zhuo, T. K. Yoo, and C. -H. Chung, Fabrication of dendritic silver-coated copper powders by galvanic displacement reaction and their thermal stability against oxidation, Appl. Surf. Sci., 389, 865-873 (2016).   DOI
23 T. H. Kim, H. Kim, H. J. Jang, N. Lee, K. H. Nam, D. W. Chang, and S. Lee, Improvement of the thermal stability of dendritic silver-coated copper microparticles by surface modification based on molecular self-assembly, Nano Converg., 8, 15 (2021).   DOI
24 Y. S. Lin, and S. S. Chiu, Electrical properties of conductive adhesives as affected by particle compositions, particle shapes, and oxidizing temperatures of copper powders in a polymer matrix, J. Appl. Polym. Sci., 93, 2045-2053 (2004).   DOI
25 J. Zhao, and D. Zhang, Epoxy-based adhesives filled with flakes ag-coated copper as conductive fillers, Polym. Compos., 38, 846-851 (2015).   DOI
26 B. Bridge, M. J. Folkes, and B. R. Wood, Investigation into the DC conductivity of colloidally dispersed gold/polymer composites, J. Phys. Appl. Phys., 23, 890-898 (1990).   DOI
27 C. Vericat, M. E. Vela, G. Benitez, p. Carro, and R. C. Salvarezza, Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system, Chem. Soc. Rev., 39, 1805-1834 (2010).   DOI
28 I. Novak, and I. Krupa, Electro-conductive resins filled with graphite for casting applications, Eur. Polym. J., 40, 1417-1422 (2004).   DOI
29 V. Brusic, M. A. Frisch, B. N. Eldridge, F. P. Novak, F. B. Kaufman, B. M. Rush, and G. S. Frankel, Copper corrosion with and without inhibitors, J. Electrochem. Soc., 138, 2253-2259 (1991).   DOI