• Title/Summary/Keyword: electrode arrays

Search Result 92, Processing Time 0.024 seconds

Automatic Switching System for The Impedance Analysis of Multichannel icroelectrode Arrays: Limits and Improvement Scheme (다채널 미세전극칩 임피던스 분석을 위한 자동 스위칭 시스템: 한계점 및 개선 방안)

  • Lee, Seok-Young;Nam, Yoon-Key
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.3
    • /
    • pp.207-217
    • /
    • 2011
  • Electrode impedances are measured to quantitatively characterize the electrode-electrolyte or cell-electrode interfaces. In the case of high-density microelectrode arrays(MEAs) that have been developed for brainmachine interface applications, the characterization process becomes a repeating and time-consuming task; a system that can perform the measurement and analysis in an automated fashion with accuracy and speed is required. However, due to the large number of channels, parasitic capacitance and off-capacitance components of the switching system become the major factors that decreased the accuracy for the measurement of high impedance microelectrodes. Here we investigated the implementation of automatic impedance measurement system with analyzing the causes of possible measurement-related problems in multichannel switching configuration. Based on our multi-channel measurement circuit model, we suggest solutions to the problems and introduce a novel impedance measurement scheme using electro-mechanical relays. The implemented measurement system could measure |Z| < 700 $k{\Omega}$ of impedance in - 10% errors, which can be widely applicable to high density neural recording MEAs.

Fabrication of H2 Gas Sensor Based on ZnO Nanarod Arrays by a Sonochemical Method

  • Lee, Mi-Sun;Oh, Eu-Gene;Jeong, Soo-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3735-3737
    • /
    • 2011
  • We report a simple method for fabricating ZnO gas sensors via a sonochemical route and their $H_2$ gas sensing properties. Vertically aligned ZnO nanorod arrays as a sensing material were synthesized on a Pt-electrode patterned alumina substrate under ambient conditions. The advantage of the proposed method is a high speed of processing. The gas sensor based on ZnO nanorod arrays with large specific surface area showed a high response to $H_2$ and a detection limit of 70 ppm at $250^{\circ}C$. Also, their response and recovery time were relatively short and a complete regeneration was observed. A mechanism for sensing $H_2$ gas on the surface of ZnO nanorods is proposed.

Preparation of Nitrogen-doped Carbon Nanowire Arrays by Carbonization of Mussel-inspired Polydopamine

  • Oh, Youngseok;Lee, Jea Uk;Lee, Wonoh
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.132-137
    • /
    • 2016
  • Based on mussel-inspired polydopamine (PDA), a novel technique to fabricate carbon nanowire (CNW) arrays is presented for a possible use of porous carbon electrode in electrochemical energy storage applications. PDA can give more porosity and nitrogen-doping effect to carbon electrodes, since it has high graphitic carbon yield characteristic and rich amine functionalities. Using such outstanding properties, the applicability of PDA for electrochemical energy storage devices was investigated. To achieve this, the decoration of the CNW arrays on carbon fiber surface was performed to increase the surface area for storage of electrical charge and the chemical active sites. Here, zinc oxide (ZnO) nanowire (NW) arrays were hydrothermally grown on the carbon fiber surface and then, PDA was coated on ZnO NWs. Finally, high temperature annealing was performed to carbonize PDA coating layers. For higher energy density, manganese oxide ($MnO_x$) nanoparticles (NPs), were deposited on the carbonized PDA NW arrays. The enlarged surface area induced by carbon nanowire arrays led to a 4.7-fold enhancement in areal capacitance compared to that of bare carbon fibers. The capacitance of nanowire-decorated electrodes reached up to $105.7mF/cm^2$, which is 59 times higher than that of pristine carbon fibers.

Simultaneous mixing and pumping using asymmetric microelectrodes (비대칭 미세전극을 이용한 동시 혼합 및 펌핑)

  • Kim, Byoung-Jae;Yoon, Sang-Youl;Lee, Kyung-Heon;Sung, Hyung-Jin
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.77-83
    • /
    • 2007
  • This paper presents numerical and experimental works for simultaneous pumping and mixing small liquid using asymmetric microelectrode arrays, based on AC electroosmotic flows. To this end, four arrangements of electrode pairs were considered with diagonal/herringbone shapes. Numerical simulations were made of three-dimensional geometries by using the linear theory. The results indicated that the helical flow motions induced by the electrode arrays play a significant role in the mixing enhancement. The pumping performance was influenced by the slip velocity at the center region of the channel compared to that near the side walls. To validate the numerical predictions, the microfluidic devices were made through MEMS. The flow rate was obtained by using micro PIV, increasing the applied frequency. The electrolyte was potassium chloride solution. The flow patterns above electrodes were visualized to see lateral flow for mixing. The experimental results showed good agreements with the numerical predictions.

  • PDF

Titanium Oxide Nanotube Arrays for Quartz Ctystal Microbalance (수정진동자 미세저울을 위한 티타늄산화물 나노튜브 어레이)

  • Mun, Kyu-Shik;Yang, Dae-Jin;Park, Hun;Choi, Won-Youl
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.372-372
    • /
    • 2007
  • Titanium oxide nanotube arrays were fabricated by the anodization of pure titanium thin film deposited at $500^{\circ}C$ on silicon substrates. The titania nanotubes were grown by anodization in nonaqueous-base electrolytes at different potentials between 5 V and 30 V. $TiO_2$ nanotube array with a small pore diameter of 40 nm and long titanium oxide layer of $4\;{\mu}m$ was obtained. The $TiO_2$ nanotube array was used as a porous electrode for quartz crystal microbalance (QCM). Nanoporous morphology of electrode will increase the sensitivity of microbalance.

  • PDF

Calibrating Electrode Misplacement in Underwater Electric Field Sensor Arrays for the Electric Field-Based Localization of Underwater Vessels (수중 이동체의 전기장 신호 기반 위치추정을 위한 수중 전기장 배열센서의 전극 부설 위치 오차 보정 방법)

  • Kim, Jason;Lee Ingyu;Bae, Ki-Woong;Yu, Son-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.330-336
    • /
    • 2022
  • This paper proposes a method to calibrate the electrode misplacement in underwater electric field sensor arrays (EFSAs) for accurate measurements of underwater electric field signatures. The electrode misplacement of an EFSA was estimated by measuring the electric field signatures generated by a known electric source and by comparing the measurements with the theoretical calculations under similar measurement conditions. When the EFSA measured the electric field signatures induced by an unknown electric source, the electric properties of the unknown electric source were approximated by considering the optimized estimation of the electrode misplacement of the EFSA. Finally, the measured electric field signatures were calibrated by calculating the theoretical electric field signatures to be measured with an ideally installed EFSA without electrode misplacement; the approximated electric properties of the unknown electric source were also taken into account. Simulations were conducted to test the proposed calibration method. The results showed that the electrode misplacement could be estimated. Further, the electric field measurements and the electric field-based localization of underwater vessels became more accurate after the application of the proposed calibration method. The proposed method will contribute to applications such as the detection and localization of underwater electric sources, which require accurate measurements of underwater electric field signatures.

Simulation and Measurement of Characteristic in 450 mm CCP Plasma Source

  • Park, Gi-Jeong;Seo, Sang-Hun;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.508-508
    • /
    • 2012
  • CST microwave studio is used to simulate the plasma profile of the 450mm CCP source. Standing wave effect becomes important at the high frequency as the electrode radius increases. To solve plasma non-uniformity problem, we designed multi electrode chamber to decreasing standing wave effect. Simulation showed the ratio of input power of each electrode is related with electric field strength. The multi electrode was constructed and measured by 2D probe arrays using floating harmonic method. Uniformity of 450 mm CCP was changed by the ratio of input power of each electrode. We described this dependence with circuit model.

  • PDF

Fabrication of TiO2 Nanotube Arrays by Anodic Oxidation Method and its Photoelectrochemical Properties (양극산화법에 의한 TiO2 나노튜브 어레이의 제조 및 광전기화학적 특성에 관한 연구)

  • Kim, Seon-Min;Cho, Kwon-Koo;Choe, Yeong-Jin;Kim, Ki-Won;Ryu, Kwang-Sun
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.216-222
    • /
    • 2010
  • Self-standing $TiO_2$ nanotube arrays were fabricated by potentiostatic anodic oxidation method using pure Ti foil as a working electrode and ethylene glycol solution as electrolytes with small addition of $NH_4F$ and $H_2O$. The influences of anodization temperature and time on the morphology and formation of $TiO_2$ nanotube arrays were investigated. The fabricated $TiO_2$ nanotube arrays were applied as a photoelectrode to dye-sensitized solar cells. Regardless of anodizing temperature and time, the average diameter and wall thickness of $TiO_2$ nanotube show a similar value, whereas the thickness show a different trend with reaction temperature. The thickness of $TiO_2$ nanotube arrays anodized at $20^{\circ}C$ and $30^{\circ}C$ was time-dependent, but on the other hand its at $10^{\circ}C$ are independent of anodization time. The conversion efficiency is low, which is due to a morphology breaking of the $TiO_2$ nanotube arrays in manufacturing process of photoelectrode.

Fabrication & Properties of Field Emitter Arrays using the Mold Method for FED Application (Mold 법에 의해 제작된 FED용 전계에미터어레이의 특성 분석)

  • ;;;;K. Oura
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.347-350
    • /
    • 2001
  • A typical Mold method is to form a gate electrode, a gate oxide, and emitter tip after fabrication of mold shape using wet-etching of Si substrate. In this study, however, new Mold method using a side wall space structure is used in order to make sharper emitter tip with a gate electrode. Using LPCVD(low pressure chemical vapor deposition), a gate oxide and electrode layer are formed on a Si substrate, and then BPSG(Boro phospher silicate glass) thin film is deposited. After, the BPSG thin film is flowed into a mold as high temperature in order to form a sharp mold structure. Next TiN thin film is deposited as a emitter tip substance. The unfinished device with a glass substrate is bonded by anodic bonding techniques to transfer the emitters to a glass substrate, and Si substrate is etched using KOH-deionized water solution. Finally, we made sharp field emitter array with gate electrode on the glass substrate.

  • PDF

Fabrication and Growth Behavior of TiO2 Nanotube Arrays by Anodic Oxidation Method (양극산화법에 의한 TiO2 나노튜브 어레이의 제조와 성장거동)

  • Kim, Seon-Min;Kim, Ki-Won;Ryu, Kwang-Sun;Kim, Yoo-Young;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.18 no.1
    • /
    • pp.56-63
    • /
    • 2011
  • Recently, $TiO_2$ nanotubes have considerably researched because of their novel application about photocatalysis, dye-sensitized solar cells (DSSCs), lithium ion battery, etc. In this work, self-standing $TiO_2$ nanotube arrays were fabricated by anodic oxidation method using pure Ti foil as a working electrode in ethylene glycole with 0.3M $NH_4F$ + $2%H_2O$. Growth behavior of $TiO_2$ nanotube arrays was compared according to temperature, voltage and time. The morphology, structure and crystalline of anodized $TiO_2$ nanotube arrays were observed by FE-SEM (field emission scanning electron microscope) and XRD (X-ray diffraction).