Browse > Article
http://dx.doi.org/10.46670/JSST.2022.31.5.330

Calibrating Electrode Misplacement in Underwater Electric Field Sensor Arrays for the Electric Field-Based Localization of Underwater Vessels  

Kim, Jason (Department of Convergence IT Engineering, Pohang University of Science and Technology)
Lee Ingyu (Department of Convergence IT Engineering, Pohang University of Science and Technology)
Bae, Ki-Woong (Agency for Defence Development, Maritime Technology Research Institute)
Yu, Son-Cheol (Department of Convergence IT Engineering, Pohang University of Science and Technology)
Publication Information
Journal of Sensor Science and Technology / v.31, no.5, 2022 , pp. 330-336 More about this Journal
Abstract
This paper proposes a method to calibrate the electrode misplacement in underwater electric field sensor arrays (EFSAs) for accurate measurements of underwater electric field signatures. The electrode misplacement of an EFSA was estimated by measuring the electric field signatures generated by a known electric source and by comparing the measurements with the theoretical calculations under similar measurement conditions. When the EFSA measured the electric field signatures induced by an unknown electric source, the electric properties of the unknown electric source were approximated by considering the optimized estimation of the electrode misplacement of the EFSA. Finally, the measured electric field signatures were calibrated by calculating the theoretical electric field signatures to be measured with an ideally installed EFSA without electrode misplacement; the approximated electric properties of the unknown electric source were also taken into account. Simulations were conducted to test the proposed calibration method. The results showed that the electrode misplacement could be estimated. Further, the electric field measurements and the electric field-based localization of underwater vessels became more accurate after the application of the proposed calibration method. The proposed method will contribute to applications such as the detection and localization of underwater electric sources, which require accurate measurements of underwater electric field signatures.
Keywords
Sensor calibration; Sensor installation error; Point-dipole model; Underwater electric potential (UEP); Particle swarm optimization (PSO);
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 M. Dhanak et al., "AUV-based characterization of EMF emissions from submerged power cables", OCEANS 2015 - Genova, pp. 1-6, Genova, Italy, 2015.
2 R. A. S. Gehrmann et al., "Marine mineral exploration with controller source electromagnetics at the TAG hydrothermal field, 26°N mid-Atlantic ridge", Geophys. Res. Lett., Vol. 46, No. 11, pp. 5808-5816, 2019.   DOI
3 K.-W. Bae, C.-S. Yang, S.-H. Han, S.-M. Jeoung, and H. -J. Chung, "Low-noise preamplifier design for underwater electric field sensors using chopper stabilized operational amplifiers and multiple matched transistors", J. Sens. Sci. Technol., Vol. 31, No. 2, pp. 120-124, 2022.   DOI
4 Y. Peng, J.-f. Cheng, and R.-x. Jiang, "Inversion of UEP signatures induced by ships based on PSO method", Def. Technol., Vol. 16, No. 1, pp. 172-177, 2020.   DOI
5 Y.-S. Kim, K.-M. Kim, S. Lee, and J.-G. Kim, "Effect of temperature and flow velocity on the cathodic protection of ships and underwater electromagnetic signatures", Korean J. Met. Mater., Vol. 55, No. 5, pp. 348-356, 2017.   DOI
6 S.-H. Cho, H.-K. Jung, H. Lee, H. Rim, and S. K. Lee, "Real-time underwater object detection based on DC resistivity method", IEEE Trans. Geosci. Remote Sens., Vol. 54, No. 11, pp. 6833-6842, 2016.   DOI
7 B. Sun, B. Yan, J. Zhang, and S. Hu, "Ship tracking based on underwater electric potential", Math. Probl. Eng., Vol. 2018, pp. 1-8, 2018.
8 H.-K. Jung, S.-H. Cho, H. Lee, and H. Rim, "3-Axis electric field sensor for underwater", Korea Patent 10-1643959-0000, 25 Jul., 2016.
9 S. Bian, P. Hevesi, L. Christensen, and P. Lukowicz, "Induced magnetic field-based indoor positioning system for underwater environments", Sensors, Vol. 21, No. 6, p. 2218, 2021.   DOI
10 E. Dalberg, A. Lauberts, R. K. Lennartsson, M. J. Levonen, and L. Persson, "Underwater target tracking by means of acoustic and electromagnetic data fusion", 2006 9th International Conference on Information Fusion, pp. 1-7, Florence, Italy, 2006.
11 D. M. Mach and W. J. Koshak, "General matrix inversion technique for the calibration of electric field sensor arrays on aircraft platforms", J. Atmos. Ocean Technol., Vol. 24, No. 9, pp. 1576-1587, 2007.   DOI
12 D. Schaefer, J. Doose, M. Pichlmaier, A. Rennings, and D. Erni, "Conversion of UEP signatures between different environmental conditions using shaft currents", IEEE J. Ocean. Eng., Vol. 41, No. 1, pp. 105-111, 2016.   DOI
13 H.-J. Chung, C.-S. Yang, and J.-J. Jeon, "A study on analysis method of underwater electric field signature due to ship's corrosion and corrosion protection system", J. KIMS Technol., Vol. 11, No. 2, pp. 43-52, 2008.
14 Z. Wang, M. Deng, K. Chen, M. Wang, Q. Zhang, and D. Zeng, "Development and evaluation of an ultralow-noise sensor system for marine electric field measurements", Sens. Actuator A Phys., Vol. 213, pp. 70-78, 2014.   DOI
15 B. B. Laud, Electromagnetics, 2nd ed., New Age International, p. 25, 1987.
16 S. Lee, C.-S. Yang, and H.-J. Chung, "Development of multi-rod type Ag-AgCl electrodes for an underwater electric field sensor", J. Sens. Sci. Technol., Vol. 31, No. 1, pp. 45-50, 2022.   DOI
17 S. Kim, B. Ku, W. Hong, and H. Ko, "Performance comparison of target localization for active sonar systems", IEEE Trans. Aerosp. Electron. Syst., Vol. 44, No. 4, pp. 1371-1380, 2008.   DOI