• Title/Summary/Keyword: electrochemical studies

Search Result 457, Processing Time 0.027 seconds

Conduction Mechanism of Charge Carriers in Electrodes and Design Factors for the Improvement of Charge Conduction in Li-ion Batteries

  • Akhtar, Sophia;Lee, Wontae;Kim, Minji;Park, Min-Sik;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.1-20
    • /
    • 2021
  • In-depth knowledge of electrode processes is crucial for determining the electrochemical performance of lithium-ion batteries (LIBs). In particular, the conduction mechanisms of charged species in the electrodes, such as lithium ions (Li+) and electrons, are directly correlated with the performance of the battery because the overall reaction is dependent on the charge transport behavior in the electrodes. Therefore, it is necessary to understand the different electrochemical processes occurring in electrodes in order to elucidate the charge conduction phenomenon. Thus, it is essential to conduct fundamental studies on electrochemical processes to resolve the technical challenges and issues arising during the ionic and electronic conduction. Furthermore, it is also necessary to understand the transport of charged species as well as the predominant factors affecting their transport in electrodes. Based on such in-depth studies, potential approaches can be introduced to enhance the mobility of charged entities, thereby achieving superior battery performances. A clear understanding of the conduction mechanism inside electrodes can help overcome challenges associated with the rapid movement of charged species and provide a practical guideline for the development of advanced materials suitable for high-performance LIBs.

Lithium Insertion Behavior of Nanoscopic Co3O4 Prepared with Avian Egg Membrane as a Template

  • Christy, Maria;Jisha, M.R;Kim, Ae-Rhan;Nahm, Kee-Suk;Yoo, Dong-Jin;Suh, E.K.;Kumari, T. Sri Devi;Kumar, T. Prem;Stephan, A. Manuel
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1204-1208
    • /
    • 2011
  • Nanoscopic $Co_3O_4$ particles were prepared using avian egg membrane as a template at $800^{\circ}C$. The prepared materials were subjected to XRD, SEM, TEM and Raman spectroscopic studies. Cyclic voltammetry study shows a single step oxidation and reduction process. Electrochemical lithium insertion behavior of the materials was examined in coin cells of the 2032 configuration. The material showed a discharge capacity 600mAh/g even after 20 cycles.

Introduction of Selective Electrochemical Additive Manufacturing Technology and Consideration of Integration Method for PCB Mass Production Process (선택적 전기화학 3D 프린터 기술 소개 및 PCB 양산공정 적용방식 고찰)

  • Kim, Sung-Bin;Yoo, Bongyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.3
    • /
    • pp.158-163
    • /
    • 2021
  • Some studies on electrochemical additive manufacturing of metals were summarized in this technical report, and development status of selective electrochemical 3D printing technology was introduced. In order to apply it to the PCB mass production process, essential considerations how to overcome the fundamental problems, such as the sizing, process sequence and PCB process design have been described.

Electrosynthesis and Electrochemical Properties of Metal Oxide Nano Wire/ P-type Conductive Polymer Composite Film

  • Siadat, S.O. Ranaei
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.81-87
    • /
    • 2015
  • This study introduces a facile strategy to prepare metal oxide/conducting polymer nanocomposites that may have promising applications in energy storage devices. Ploy aniline/nano wire manganese dioxide (PANI/NwMnO2) was synthesized by cyclic voltammetry on glassy carbon electrode. Morphology and structure of the composite, pure PANI, MnO2 nanowires were fully characterized using XRD and SEM analysis. Electrochemical studies shows excellent synergistic effect between PANI and MnO2 nanowires which results in its capacitance increase and cycle stability against PANI electrode. Specific capacitances of PANI/NwMnO2 and PANI were 456 and 190 F/g respectively. The electrochemical performance of electrodes studied using cyclic voltammetry, Galvanostatic charge/discharge and impedance spectroscopy.

Cycling Performance of Supercapacitors Assembled with Polypyrrole/Multi-Walled Carbon Nanotube/Conductive Carbon Composite Electrodes

  • Paul, Santhosh;Kim, Jae-Hong;Kim, Dong-Won
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.91-96
    • /
    • 2011
  • Polypyrrole (PPy)/multi-walled carbon nanotube (MWCNT)/conductive carbon (CC) composites are synthesized by the chemical oxidative polymerization method. The morphology analysis of the composite materials indicates uniform coating of PPy over MWCNTs and conductive carbon. The electrochemical performances of PPy/MWCNT/CC composites with different compositions are evaluated in order to optimize the composition of the composite electrode. Galvanostatic chargedischarge measurements and electrochemical impedance spectroscopy studies prove the excellent cycling stability of the PPy/MWCNT/CC composite electrodes.

Study on Electrochemical Performance of Solid-State-Electrode on Steel bar in Chloride Solution (염화물 수용액 중의 철근에 대한 고체전극의 전기화학적 성능 연구)

  • Park, Dong-Jin;Park, Jang-Hyun;Lee, Han-Seung;Subbiah, Karthick
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.147-148
    • /
    • 2018
  • In order to compare the electrochemical performance with that of Calomel Electrode, MnO2 solid-state-electrode was fabricated and its potential and impedance were measured in chloride aqueous solution. As a result, the SCPS without chloride ions showed a potential of -200 mV or more and an impedance over 2000 Ωcm, but the potential below -600 mV and the impedance below -200 Ωcm showed as the chloride concentration in the solution increased. It is considered electrochemical studies on the corrosion of rebar are necessary for the MOE, which shows the same tendency as SCE and exhibits electrochemical performance, over the Mortar level in the future.

  • PDF

Electrochemical Studies on the Mechanism of the Fabrication of Ceramic Films by Hydrothermal-Electrochemical Technique

  • Zhibin Wu;Masahiro Yoshimura
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.8
    • /
    • pp.869-874
    • /
    • 1999
  • In this paper, electrochemical techniques are used to investigate hydrothermal-electrochemically formation of barium titanate (BT) ceramic films. For comparison, the electrochemical behaviors of anodic titanium oxide films formed in alkaline solution were also investigated both at room temperature and in hydrothermal condition at 150.0 ℃. Film structure and morphology were identified by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Titanium oxide films produced at different potentials exhibit different film morphology. The breakdown of titanium oxide films anodic growth on Ti electrode plays an important roles in the formation of BT films. BT films can grow on anodic oxide/metal substrate interface by short-circuit path, and the dissolution-precipitation processes on the ceramic film/solution interface control the film structure and morphology. Based upon the current experimental results and our previous work, extensively schematic proce-dures are proposed to model the mechanism of ceramic film formation by hydrothermal-electrochemical method.

Studies on chemical wet etching of GaN (GaN계 질화합물 반도체의 습식식각 연구)

  • 윤관기;이성대;이일형;최용석;유순재;이진구
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.398-400
    • /
    • 1998
  • In this paper, the etching studies for n-GaN were carried out using the wet chemical, the photo-enhanced-chemical, and the electro-chemical etching methods. The experimental results show that n-GaN is etched in diluted NaOH solution at room temperture and the etched thickness of NaOH and electron concentrations. Te etching rate of n-GaN samples with n.simeq.1*10$^{19}$ cm$^{-3}$ were used to compare the photo-enhanced-chemical etching with the electrochemical etching methods. The removed thickness was 680.angs./25min by the electrochemical etching methods. The removed thickness was 680 .angs./25min by the electrochemical etching method ad 784.angs./25min by the photoenhanced-chemical etching method. The patterns are 100.mu.m*100.mu.m rectangulars covered with SiO$_{2}$film. It is shown that the profile of etched side-wall of the pattern is vertical without dependance of the n-GaN orientations.

  • PDF

Low Temperature Interface Modification: Electrochemical Dissolution Mechanism of Typical Iron and Nickel Base Alloys

  • Jiangwei Lu;Zhengyang Xu;Tianyu Geng
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.220-241
    • /
    • 2024
  • Due to its unique advantages, electrochemical machining (ECM) is playing an increasingly significant role in the manufacture of difficult-to-machine materials. Most of the current ECM research is conducted at room temperature, with studies on ECM in a cryogenic environment not having been reported to date. This study is focused on the electrochemical dissolution characteristics of typical iron and nickel base alloys in NaNO3 solution at low temperature (-10℃). The polarization behaviors and passive film properties were studied by various electrochemical test methods. The results indicated that a higher voltage is required for decomposition and more pronounced pitting of their structures occurs in the passive zone in a cryogenic environment. A more in-depth study of the composition and structure of the passive films by X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy showed that the passive films of the alloys are modified at low temperature, and their capacitance characteristics are more prominent, which makes corrosion of the alloys more likely to occur uniformly. These modified passive films have a huge impact on the surface morphologies of the alloys, with non-uniform corrosion suppressed and an improvement in their surface finish, indicating that lowering the temperature improves the localization of ECM. Together with the cryogenic impact of electron energy state compression, the accuracy of ECM can be further improved.

Electrochemical Studies of Immobilized Laccases on the Modified-Gold Electrodes

  • Yoon Chang-Jung;Kim Hyug-Han
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.1
    • /
    • pp.26-31
    • /
    • 2004
  • The direct electrochemical studies of four laccases (plant and fungal laccases) have been investigated on a gold electrode functionalized with a new tether of 2.2'-dithiosalicylic aldehyde. Results from these studies indicate that the redox potential of the active site of plant laccase from Rhus vernificera is shifted to a more negative value(255 mV versus SCE) than that of fungal laccase from Pyricularia oryzae (480 mV versus SCE). Mechanistic studies indicate that the reduction of type-1 Cu precedes the reduction of type-2 and type-3 Cu ions when the electrode is poised initially at different potentials. Also a new tether, 2.2'-dithiosalicylic aldehyde, has been used to study the redox properties of two laccases (LCCI and Lccla) covalently attached to a gold electrode. An irreversible peak at 0.47V vs. SCE is observed in the cyclic voltammorams of LCCI. In contrast, the cyclic voltammograms of LCCIa contain a quasi-reversible peak at 0.18V vs. SCE and an irreversible peak at 0.50V vs. SCE. We find that the replacement of the eleven amino acids a the C-terminus with a single cysteine residue $(i.e., \;LCCI{\rightarrow}LCCIa)$ influences the rate of heterogeneous electron transfer between an electrode and the copper containing active sites $(K_{het}\;for\;LCCI=1.0\times10^{-2}\;s^{-1}\;and\;K_{het}\;for\;LCCI_a= 1.0\;times10^{-1}\;s^{-1}\'at\;0.18V\;versus\;SCE\;and\;4.0\times10^{-2}\;s^{-1}\;at\;0.50V\; versus\;SCE)$. These results show for the first time that the change of the primary structure of a protein via site-directed mutagenesis influences both the redox potentials of the copper ions in the active site and the rate of heterogeneous electron transfer.