DOI QR코드

DOI QR Code

Low Temperature Interface Modification: Electrochemical Dissolution Mechanism of Typical Iron and Nickel Base Alloys

  • Jiangwei Lu (College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • Zhengyang Xu (College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • Tianyu Geng (College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics)
  • Received : 2023.08.21
  • Accepted : 2023.10.23
  • Published : 2024.05.31

Abstract

Due to its unique advantages, electrochemical machining (ECM) is playing an increasingly significant role in the manufacture of difficult-to-machine materials. Most of the current ECM research is conducted at room temperature, with studies on ECM in a cryogenic environment not having been reported to date. This study is focused on the electrochemical dissolution characteristics of typical iron and nickel base alloys in NaNO3 solution at low temperature (-10℃). The polarization behaviors and passive film properties were studied by various electrochemical test methods. The results indicated that a higher voltage is required for decomposition and more pronounced pitting of their structures occurs in the passive zone in a cryogenic environment. A more in-depth study of the composition and structure of the passive films by X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy showed that the passive films of the alloys are modified at low temperature, and their capacitance characteristics are more prominent, which makes corrosion of the alloys more likely to occur uniformly. These modified passive films have a huge impact on the surface morphologies of the alloys, with non-uniform corrosion suppressed and an improvement in their surface finish, indicating that lowering the temperature improves the localization of ECM. Together with the cryogenic impact of electron energy state compression, the accuracy of ECM can be further improved.

Keywords

Acknowledgement

This research was sponsored by the National Natural Science Foundation of China (91960204).

References

  1. Y. Wang, Z. Xu, and A. Zhang, Electrochim. Acta, 2020, 331, 135429.
  2. Z. Xu and Y. Wang, Chinese J. Aeronaut., 2021, 34(2), 28-53. https://doi.org/10.1016/j.cja.2019.09.016
  3. T. Geng and Z. Xu, J. Adv. Manuf. Sci. Technol., 2021, 1(3), 2021006.
  4. D. Wang, Z. Zhu, N. Wang, D. Zhu, and H. Wang, Electrochim. Acta, 2015, 156, 301-307. https://doi.org/10.1016/j.electacta.2014.12.155
  5. S. Azuma, T. Kudo, H. Miyuki, M. Yamashita, and H. Uchida, Corros. Sci., 2004, 46(9), 2265-2280. https://doi.org/10.1016/j.corsci.2004.01.003
  6. G. Song, Corros. Sci., 2005, 47(8), 1953-1987. https://doi.org/10.1016/j.corsci.2004.09.007
  7. R. F. A. Jargelius-Pettersson, Corros. Sci., 1999, 41(8), 1639-1664. https://doi.org/10.1016/S0010-938X(99)00013-X
  8. I. Betova, M. Bojinov, P. Kinnunen, T. Laitinen, P. Pohjanne, and T. Saario, Electrochim. Acta, 2002, 47(13-14), 2093-2107. https://doi.org/10.1016/S0013-4686(02)00080-4
  9. Y. Yanqiu, W. Zhixun, Z. Yanchao, W. Jiapo, L. Zhenwei, and Y. Zhufeng, Corros. Sci., 2020, 170, 108643.
  10. Y. Ge, Z. Zhu, and D. Wang, Electrochim. Acta, 2017, 253, 379-389. https://doi.org/10.1016/j.electacta.2017.09.046
  11. M. A. Siddiqui, I. Ullah, S. K. Kolawole, C. Peng, J. Wang, L. Ren, K. Yang, and D. D. Macdonald, Corros. Sci., 2021, 190, 109693.
  12. M. M. Malouche, N. Stein, J. Lecomte, C. Boulanger, and M. Rancic, J. Appl. Electrochem., 2020, 50, 197-206. https://doi.org/10.1007/s10800-019-01386-z
  13. G. Liu, H. Tong, Y. Li, Q. Tan, and Y. Zhu, Mater. Today Commun., 2021, 29, 102762.
  14. S. Zhang, J. Liu, X. Lin, Y. Huang, M. Wang, Y. Zhang, T. Qin, and W. Huang, J. Alloys Compd., 2021, 878, 160395.
  15. M. Chai, Z. Li, H. Yan, and Z. Huang, Int. J. Adv. Manuf. Technol., 2020, 112, 525-536. https://doi.org/10.1007/s00170-020-06290-x
  16. N. Smets, S. Van Damme, D. De Wilde, G. Weyns, and J. Deconinck, J. Appl. Electrochem., 2007, 37, 315-324. https://doi.org/10.1007/s10800-006-9259-z
  17. Z. Li, B. Cao, and Y. Dai, Micromachines, 2021, 12, 950.
  18. Y. Chen, M. Fang, and L. Jiang, Int. J. Adv. Manuf. Technol., 2017, 91, 2455-2464. https://doi.org/10.1007/s00170-016-9899-z
  19. N. Smets, S. Van Damme, D. De Wilde, G. Weyns, and J. Deconinck, J. Appl. Electrochem., 2008, 39, 791-798. https://doi.org/10.1007/s10800-008-9723-z
  20. F. Klocke, M. Zeis, and A. Klink, CIRP Annals, 2015, 64(1), 217-220. https://doi.org/10.1016/j.cirp.2015.04.071
  21. R. Thanigaivelan, R. M. Arunachalam, M. Kumar, and B. P. Dheeraj, Mater. Manuf. Processes, 2017, 33(4), 383-389. https://doi.org/10.1080/10426914.2017.1279304
  22. Z.-W. Fan, L.-W. Hourng, and C.-Y. Wang, Precis. Eng., 2010, 34(3), 489-496. https://doi.org/10.1016/j.precisioneng.2010.01.001
  23. Y. Wang, Z. Xu, and A. Zhang, Corros. Sci., 2019, 157, 357-369. https://doi.org/10.1016/j.corsci.2019.06.010
  24. A. J. Bard and L. R. Faulkner, Electrochemical Methods:Fundamentals and Applications, 2nd ed, John Wiley & Sons, Inc., New York, USA, 2001, 124-130.
  25. X. Wang, Q. Luo, X. Wang, H. Huang, and X. Huang, Fluid Phase Equilibria, 2021, 549, 113203.
  26. D. Wang, B. He, Z. Zhu, Y. Ge, and D. Zhu, J. Electrochem. Soc., 2018, 165, E282-E288. https://doi.org/10.1149/2.1031807jes
  27. C. Boissy, B. Ter-Ovanessian, N. Mary, and B. Normand, Electrochim. Acta, 2015, 174, 430-437. https://doi.org/10.1016/j.electacta.2015.05.179
  28. S. Fujimoto and H. Tsuchiya, Corros. Sci., 2007, 49(1), 195-202. https://doi.org/10.1016/j.corsci.2006.05.020
  29. B. Sun, X. Zuo, X. Cheng, and X. Li, npj Mater. Degrad., 2020, 4, 37. https://doi.org/10.1038/s41529-020-00142-5
  30. K. H. Lo, C. H. Shek, and J. K. L. Lai, Mater. Sci. Eng.: R: Rep., 2009, 65(4-6), 39-104. https://doi.org/10.1016/j.mser.2009.03.001
  31. L. Liu, Y. Li, and F. H. Wang, J. Mater. Sci. Technol., 2010, 26(1), 1-14.
  32. F. Mohammadi, T. Nickchi, M. M. Attar, and A. Alfantazi, Electrochim. Acta, 2011, 56(24), 8727-8733. https://doi.org/10.1016/j.electacta.2011.07.072
  33. H. Zeng, Y. Yang, M. Zeng, and M. Li, J. Mater. Sci. Technol., 2021, 66, 177-185. https://doi.org/10.1016/j.jmst.2020.06.030
  34. N. Dass, Physics and Chemistry of Liquids, 1986, 15(4), 323-326. https://doi.org/10.1080/00319108608078493
  35. M. Schneider, L. Simunkova, A. Michaelis, and W. Hoogsteen, Int. J. Refract. Met. Hard Mater., 2021, 101, 105689.
  36. C. Rosenkranz, M. M. Lohrengel, and J. W. Schultze, Electrochim. Acta, 2005, 50(10), 2009-2016. https://doi.org/10.1016/j.electacta.2004.09.010
  37. A. Schupp, O. Beyss, B. Rommes, A. Klink, and D. Zander, Materials, 2021, 14(9), 2132.
  38. T. Haisch, E. J. Mittemeijer, and J. W. Schultze, J. Appl. Electrochem., 2004, 34, 997-1005. https://doi.org/10.1023/B:JACH.0000042675.15101.ff