Browse > Article
http://dx.doi.org/10.33961/jecst.2020.01564

Conduction Mechanism of Charge Carriers in Electrodes and Design Factors for the Improvement of Charge Conduction in Li-ion Batteries  

Akhtar, Sophia (Department of Energy Science, Sungkyunkwan University)
Lee, Wontae (Department of Energy Science, Sungkyunkwan University)
Kim, Minji (Department of Energy Science, Sungkyunkwan University)
Park, Min-Sik (Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University)
Yoon, Won-Sub (Department of Energy Science, Sungkyunkwan University)
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.1, 2021 , pp. 1-20 More about this Journal
Abstract
In-depth knowledge of electrode processes is crucial for determining the electrochemical performance of lithium-ion batteries (LIBs). In particular, the conduction mechanisms of charged species in the electrodes, such as lithium ions (Li+) and electrons, are directly correlated with the performance of the battery because the overall reaction is dependent on the charge transport behavior in the electrodes. Therefore, it is necessary to understand the different electrochemical processes occurring in electrodes in order to elucidate the charge conduction phenomenon. Thus, it is essential to conduct fundamental studies on electrochemical processes to resolve the technical challenges and issues arising during the ionic and electronic conduction. Furthermore, it is also necessary to understand the transport of charged species as well as the predominant factors affecting their transport in electrodes. Based on such in-depth studies, potential approaches can be introduced to enhance the mobility of charged entities, thereby achieving superior battery performances. A clear understanding of the conduction mechanism inside electrodes can help overcome challenges associated with the rapid movement of charged species and provide a practical guideline for the development of advanced materials suitable for high-performance LIBs.
Keywords
Li-ion Battery; Charge Transport Mechanism; Ionic Conduction; Electron Conduction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Lee, D. Lee, Y. Kim, W. Choi, W.-S. Yoon, J. Mater. Chem. A 2020, 8(20), 10206-10216.   DOI
2 K.X. Wang, X.H. Li, J.S. Chen, Adv. Mater., 2015, 27(3), 527-545.   DOI
3 C. Jiang, M. Wei, Z. Qi, T. Kudo, I. Honma, H. Zhou, J. Power Sources 2007, 166(1), 239-243.   DOI
4 H. Liu, A. Banerjee, B. Ziv, K.J. Harris, N.P.W. Pieczonka, S. Luski, G.A. Botton, G.R. Goward, D. Aurbach, I.C. Halalay, ACS Appl. Energy Mater. 2018, 1(5), 1878-1882.   DOI
5 M. Ling, J. Qiu, S. Li, C. Yan, M.J. Kiefel, G. Liu, S. Zhang, Nano Lett. 2015, 15(7), 4440-4447.   DOI
6 J. Wang, N. Yang, H. Tang, Z. Dong, Q. Jin, M. Yang,D. Kisailus, H. Zhao, Z. Tang, D. Wang, Angew. Chemie., 2013, 52(25), 6417-6420.   DOI
7 J.M. Feckl, K. Fominykh, M. Dblinger, D. FattakhovaRohlfing, T. Bein, Angew. Chemie., 2012, 51(30),7459-7463.   DOI
8 Z.S. Wu, W. Ren, L. Xu, F. Li, H.M. Cheng, ACS Nano 2011, 5(7), 5463-5471.   DOI
9 W. Lee, S. Muhammad, T. Kim, H. Kim, E. Lee, M. Jeong, S. Son, J.H. Ryou, W.S. Yoon, Adv. Energy Mater. 2018, 8(4), 1701788.   DOI
10 A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, G. Yushin, Nat. Mater,. 2010, 9(4), 353-358.   DOI
11 Q. Zhang, N. Cui, Y. Li, B. Duan, C. Zhang, J. Energy Storage., 2020, 27, 100945.   DOI
12 Z. Chen, J. Lu, B. Liu, N. Zhou, and S. Li, Energies, 2020, 13(10), 2543.   DOI
13 Y. Orikasa, Y. Gogyo, H. Yamashige, M. Katayama, K. Chen, T. Mori, K. Yamamoto, T. Masese, Y. Inada, T. Ohta, Z. Siroma, S. Kato, H. Kinoshita, H. Arai, Z. Ogumi, Y. Uchimoto, Sci. Rep., 2016, 6, 26382.   DOI
14 Y. Itou, N. Ogihara, S. Kawauchi, J. Phys. Chem. C., 2020, 124(10), 5559-5564.   DOI
15 A. Chu, A. Allam, A. Cordoba Arenas, G. Rizzoni,S. Onori, J. Power Sources,. 2020, 478, 228991.   DOI
16 K. Xu, A. Von Cresce, J. Mater. Chem., 2011, 21(27), 9849-9864.   DOI
17 T. Fukutsuka, K. Koyamada, S. Maruyama, K. Miyazaki, T. Abe, Electrochim. Acta,. 2016, 199, 380-387.   DOI
18 A. Yano, K. Hikima, J. Hata, K. Suzuki, M. Hirayama, R. Kanno, J. Electrochem. Soc., 2018, 165(14), A3221.   DOI
19 X. Yu, A. Manthiram, Energy Environ. Sci., 2018, 11(3), 527-543.   DOI
20 M. Park, X. Zhang, M. Chung, G.B. Less, A.M. Sastry, J. Power Sources., 2010, 195(24), 7904-7929.   DOI
21 C.J. Bae, C.K. Erdonmez, J.W. Halloran, Y.M. Chiang, Adv. Mater., 2013, 25(9), 1254-1258.   DOI
22 D. Kehrwald, P.R. Shearing, N.P. Brandon, P.K. Sinha, S.J. Harris, J. Electrochem. Soc., 2011, 158(12), A1393.   DOI
23 Y. Ren, A.R. Armstrong, F. Jiao, P.G. Bruce, J. Am. Chem. Soc., 2010, 132(3), 996-1004.   DOI
24 B. Vijayaraghavan, D.R. Ely, Y.-M. Chiang, R. Garcia-Garcia, R.E. Garcia, J. Electrochem. Soc., 2012, 159(5), A548.   DOI
25 R.E. Hummel, Electronic Properties of Materials-Springer-Verlag., 2011.
26 M. Wang, Y. Tian, W. Liu, R. Zhang, L. Chen, L. Yinda , L. Xin, J. Clean. Prod., 2020, 265, 121769.   DOI
27 H.L. Pan, Y.S. Hu, H. Li, L.Q. Chen, Chinese Phys. B., 2011, 20(11), 118202.   DOI
28 G.F. Yang, K.Y. Song, S.K. Joo, J. Mater. Chem. A., 2014, 2(46), 19648-19652.   DOI
29 S.W. Oh, S.-T. Myung, H.J. Bang, C.S. Yoon, K. Amine, Y.-K. Sun, Electrochem. Solid-State Lett., 2009, 12(9) , A181.   DOI
30 L. Zhang, X. Qin, S. Zhao, A. Wang, J. Luo, Z. L. Wang, F. Kang, Z. Lin, B. Li, Adv. Mater., 2020, 33, 1908445.
31 Y.C. Chen, C.Y. Ouyang, L.J. Song, Z.L. Sun, Electrochim. Acta., 2011, 56(17), 6084-6088.   DOI
32 H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Springer-Verlag Berlin Heidelberg., 2003, 1-651.
33 A. V. Chadwick, Encycl. Appl. Phys. 2003, 193-222.
34 F. Ning, S. Li, B. Xu, C. Ouyang, Solid State Ionics 2014, 263, 46-48.   DOI
35 N. Ogihara, S. Kawauchi, C. Okuda, Y. Itou, Y. Takeuchi, Y. Ukyo, J. Electrochem. Soc., 2012, 159(7), A1034.   DOI
36 N. Ogihara, Y. Itou, T. Sasaki, Y. Takeuchi, J. Phys. Chem. C., 2015, 119(9), 4612-4619.   DOI
37 T. Abe, H. Fukuda, Y. Iriyama, Z. Ogumi, J. Electrochem. Soc. 2004, 151(8), A1120.   DOI
38 Z. Ogumi, Electrochemistry, 2010, 78(5), 319-324.   DOI
39 Y. Tang, Y. Zhang, W. Li, B. Ma, X. Chen, Chem. Soc. Rev. 2015, 44(17), 5926-5940.   DOI
40 T.R. Jow, S.A. Delp, J.L. Allen, J.-P. Jones, M.C. Smart, J. Electrochem. Soc., 2018, 165(2), A361.   DOI
41 H. Gao, Q. Wu, Y. Hu, J.P. Zheng, K. Amine, Z. Chen, J. Phys. Chem. Lett. 2018, 9(17), 5100-5104.   DOI
42 P. Arora, Z. Zhang, Chem. Rev 2004, 104, 4419-4462.   DOI
43 R. Pan, Z. Wang, R. Sun, J. Lindh, K. Edstrom, M. Stromme, L. Nyholm, Cellulose 2017, 24(7), 2903-2911.   DOI
44 S.J. Kim, M.C. Kim, D.H. Kwak, D.M. Kim, G.H. Lee, H.S. Choe, K.W. Park, J. Power Sources,. 2016, 304, 119-127.   DOI
45 S. Kalluri, M. Yoon, M. Jo, S. Park, S. Myeong, J. Kim, S.X. Dou, Z. Guo, J. Cho, Adv. Energy Mater., 2017, 7(1), 1601507   DOI
46 J. Qian, L. Liu, J. Yang, S. Li, X. Wang, H.L. Zhuang, Y. Lu, Nat. Commun., 2018, 9(1), 1-11.   DOI