• 제목/요약/키워드: electrochemical method

검색결과 1,751건 처리시간 0.025초

Electrochemical Reduction of SiO2 Granules to One-Dimensional Si Rods Using Ag-Si Eutectic Alloy

  • Lee, Han Ju;Seo, Won-Chul;Lim, Taeho
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권4호
    • /
    • pp.392-398
    • /
    • 2020
  • Producing solar grade silicon using an inexpensive method is a key factor in lowering silicon solar cell costs; the direct electrochemical reduction of SiO2 in molten salt is one of the more promising candidates for manufacturing this silicon. In this study, SiO2 granules were electrochemically reduced in molten CaCl2 (850℃) using Ag-Si eutectic droplets that catalyze electrochemical reduction and purify the Si product. When Ag is used as the working electrode, the Ag-Si eutectic mixture is formed naturally during SiO2 reduction. However, since the Ag-Si eutectic droplets are liquid at 850℃, they are easily lost during the reduction process. To minimize the loss of liquid Ag-Si eutectic droplets, a cylindrical graphite container working electrode was introduced and Ag was added separately to the working electrode along with the SiO2 granules. The graphite container working electrode successfully prevented the loss of the Ag-Si eutectic droplets during reduction. As a result, the Ag-Si eutectic droplets acted as stable catalysts for the electrochemical reduction of SiO2, thereby producing one-dimensional Si rods through a mechanism similar to that of vapor-liquid-solid growth.

미세 홈 형성을 위한 마이크로 전해가공에 관한 연구 (A Study on the Electrochemical Micro-machining for Fabrication of Micro Grooves)

  • 박정우;이은상;문영훈
    • 한국정밀공학회지
    • /
    • 제19권4호
    • /
    • pp.101-108
    • /
    • 2002
  • A specially-built EMM (Electrochemical Micro Machining) / PECM (Pulse Electrochemical Machining) cell, a electrode tool filled with non-conducting material, a electrolyte flow control system and a small & stable gap control unit are developed to achieve accurate dimensions of recesses. Two electrolytes, aqueous sodium nitrate and aqueous sodium chloridc arc applied in this study. The farmer electrolyte has better machine-ability than the latter one because of its appropriate changing to the transpassive state without pits on the surface of workpiece. It is easier to control the machining depth precisely by micrometer with pulse current than direct current. This paper also presents an identification method for the machining depth by in-process analysis of machining current and inter electrode gap size. The inter electrode gap characteristics, inc1uding pulse current, effective volumetric electrochemical equivalent and electrolyte conductivity variations, are analyzed based on the model and experiments.

해수 내 캐비테이션 환경에서 동합금의 정전위법에 의한 손상 방지 기술 (Damage Protection Technology by Potentiostatic Method of Cu Alloy Under Cavitation Environment in Seawater)

  • 김성종;박재철;장석기
    • 한국표면공학회지
    • /
    • 제46권3호
    • /
    • pp.120-125
    • /
    • 2013
  • This investigation was to identify the electrochemical corrosion protection conditions to minimize the cavitation damage by generating hydrogen gas with the means of hydrogen overvoltage before the impact pressure of the cavity is transferred to the surface. The hybrid potentiostatic test method is designed to evaluate a complexed cavitation and electrochemical characteristic for ALBC3 alloy that is diverse and its broad applications fields in marine industry. The surface observation showed that neither the cavitation damage nor the electrochemical damage by the hydrogen gas generation occurred in the potential of -2.6 V under the cavitation environment. In the potentiostatic experiments under the cavitation environment, the cavities were reflected or cancelled out by the collision of the cavities with the hydrogen gas generated by the hydrogen overvoltage.

전기화학을 이용한 실리콘 표면상으로 기능성 물질의 공간 선택적 고정화 연구 (Spatially Selective Immobilization of Functional Materials onto Silicon Surfaces Using Electrochemical Method)

  • 박수현;아칠성;김규원
    • 전기화학회지
    • /
    • 제12권1호
    • /
    • pp.40-46
    • /
    • 2009
  • 실리콘 표면을 전기화학적으로 활성화하여 활성화된 표면에만 선택적으로 단백질이나 나노입자 등의 기능성 물질을 고정화하는 방법을 개발하였다. 이를 위해 Carboxymethylbenzendiazonium (CMBD) 양이온을 전기화학적 환원반응을 통해 고정하여 실리콘 표면을 활성화하는 방식을 선택하였다. 그리고 활성화 된 표면에서만 기능성 물질이 고정된 것을 확인함을 통하여 CMBD 양이온의 사용이 선택적 고정화에 매우 효과적임을 보였다. 나아가 이 방법을 응용하여 실리콘 나노소자에 탑재된 실리콘 나노선 어레이 중 선택된 나노선의 표면만을 활성화하고 금 나노입자를 선택적으로 고정하는 연구를 수행하였다.

3D Printed Flexible Cathode Based on Cu-EDTA that Prepared by Molecular Precursor Method and Microwave Processing for Electrochemical Machining

  • Yan, Binggong;Song, Xuan;Tian, Zhao;Huang, Xiaodi;Jiang, Kaiyong
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권2호
    • /
    • pp.180-186
    • /
    • 2020
  • In this work, a metal-ligand solution (Cu-EDTA) was prepared based on the molecular precursor method and the solution was spin-coated onto 3D printed flexible photosensitive resin sheets. After being processed by microwave, a laser with a wavelength of 355 nm was utilized to scan the spin-coated sheets and then the sheets were immersed in an electroless copper plating solution to deposit copper wires. With the help of microwave processing, the adhesion between copper wires and substrate was improved which should result from the increase of roughness, decrease of contact angle and the consistent orientation of coated film according to the results of 3D profilometer and SEM. XPS results showed that copper seeds formed after laser scanning. Using the 3D printed flexible sheets as cathode and galvanized iron as anode, electrochemical machining was conducted.

전기화학적 분극법을 이용한 12Cr강의 고온 재질열화도 평가 (Evaluation of High Temperature Material Degradation for 12Cr Steel by Electrochemical Polarization Method)

  • 서현욱;박기성;윤기봉
    • 대한기계학회논문집A
    • /
    • 제30권8호
    • /
    • pp.965-975
    • /
    • 2006
  • High pressure turbine blades are one of the key components in fossil power plants operated at high temperature. The blade is usually made of 12Cr steel and its operating temperature is above $500^{\circ}C$. Long term service at this temperature causes material degradation accompanied by changes in microstructures and mechanical properties such as strength and toughness. Quantitative assessment of reduction of strength and toughness due to high temperature material degradation is required for residual life assessment of the blade components. Nondestructive technique is preferred. So far most of the research of this kind was conducted with low alloy steels such as carbon steel, 1.25Cr0.5Mo steel or 2.25Cr1Mo steel. High alloy steel was not investigated. In this study one of the high Cr steel, 12Cr steel, was selected for high temperature material degradation. Electrochemical polarization method was employed to measure degradation. Strength reduction of the 12Cr steel was represented by hardness and toughness reduction was represented by change of transition temperature, FATT. Empirical relationships between the electrochemical polarization parameter and significance of material degradation were established. These relationship can be used for assessing the strength and toughness on the aged high pressure blade components indirectly by using the electrochemical method.

Consideration on the Non-linearity of Warburg Impedance for Fourier Transform Electrochemical Impedance Spectroscopy

  • Chang, Byoung-Yong
    • 전기화학회지
    • /
    • 제17권2호
    • /
    • pp.119-123
    • /
    • 2014
  • Here I report on how Fourier Transform Electrochemical Impedance Spectroscopy (FTEIS) overcomes the potential-current linearity problem encountered in the impedance calculation process. FTEIS was first invented to solve the time-related drawback of the conventional impedance technique. The dramatic time reduction of FTEIS enabled the real-time impedance measurement but brought about the linearity problem at the same time. While the conventional method circumvents the problem using the steady-state made by a sufficiently long measurement time, FTEIS cannot because of its real-time function. However, according to the mathematical development reported in this article, the potential step used in FTEIS is proved to avoid the linearity problem. During the step period, the potential and the current are linearized by the electrochemical impedance. Also, Fourier transform of the differentiated potential and current is proved to give the same result of the original ones.

Electrochemically Fabricated Alloys and Semiconductors Containing Indium

  • Chung, Yonghwa;Lee, Chi-Woo
    • Journal of Electrochemical Science and Technology
    • /
    • 제3권3호
    • /
    • pp.95-115
    • /
    • 2012
  • Although indium (In) is not an abundant element, the use of indium is expected to grow, especially as applied to copper-indium-(gallium)-selenide (CI(G)S) solar cells. In future when CIGS solar cells will be used extensively, the available amount of indium could be a limiting factor, unless a synthetic technique of efficiently utilizing the element is developed. Current vacuum techniques inherently produce a significant loss of In during the synthetic process, while electrodeposition exploits nearly 100% of the In, with little loss of the material. Thus, an electrochemical process will be the method of choice to produce alloys of In once the proper conditions are designed. In this review, we examine the electrochemical processes of electrodeposition in the synthesis of indium alloys. We focus on the conditions under which alloys are electrodeposited and on the factors that can affect the composition or properties of alloys. The knowledge is to facilitate the development of electrochemical means of efficiently using this relatively rare element to synthesize valuable materials, for applications such as solar cells and light-emitting devices.

슈퍼커패시터를 위한 그래핀 기반 전극의 전기화학적 특성에 대한 카본블랙 도입의 효과 (Influence of carbon black on electrochemical performance of graphene-based electrode for supercapacitor)

  • 김기석;박수진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.95.1-95.1
    • /
    • 2011
  • In this work, graphene was prepared by modified Hummers method and prepared graphene was applied to electrode materials for supercapacitor. In addition, to enhance the electrochemical performance of graphene, carbon black was deposited onto graphene via chemical reduction. The effect of the carbon black content incorporated on the electrochemical properties of the graphene-based electrodes was investigated. It was found that nano-scaled carbon black aggregates were deposited and dispersed onto the graphene by the chemical reduction of acid treated carbon black and graphite oxide. From the cyclic voltammograms, carbon black-deposited graphene (CB-GR) showed improved electrochemical performance, i.e., current density, quicker response, and better specific capacitance than that of pristine graphene. This indicates that the carbon black deposited onto graphene served as an conductive materials between graphene layers, leading to reducing the contact resistance of graphene and resulted in the increase of the charge transfer between graphene layers by bridge effect.

  • PDF

탄소지지체의 화학적 변형에 따른 연료전지용 백금-루테늄 촉매의 전기화학적 활성의 영향 (Effect of Chemical Modification of Carbon Supports on Electrochemical Activities for Pt-Ru Catalysts of Fuel Cells)

  • 김병주;박수진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.94.1-94.1
    • /
    • 2011
  • In this work, ordered mesoporous carbons (OMCs) were prepared by the conventional templating method using mesoporous silica (SBA-15) for Pt-Ru catalyst supports in fuel cells. The influence of surface modification on carbon supports on the electrochemical activities of Pt-Ru/OMCs was investigated with different pH. The neutral-treated OMCs (N-OMCs), base-treated OMCs (B-OMCs), and acid-treated OMCs (A-OMCs) were prepared by treating OMCs with 2 M $C_6H_6$, 2 M KOH, and 2 M $H_3PO_4$, respectively. The surface characteristic of the carbon supports were determined X-ray photoelectron spectroscopy (XPS). The electrochemical activities of the Pt-Ru catalysts had been enhanced when the OMCs supports were treated by basic or neutral agents, while the electrochemical activities had been decayed for the A-OMCs supported Pt-Ru.

  • PDF