Browse > Article
http://dx.doi.org/10.33961/jecst.2020.01151

Electrochemical Reduction of SiO2 Granules to One-Dimensional Si Rods Using Ag-Si Eutectic Alloy  

Lee, Han Ju (Department of Chemical Engineering, Soongsil University)
Seo, Won-Chul (Department of Chemical Engineering, Soongsil University)
Lim, Taeho (Department of Chemical Engineering, Soongsil University)
Publication Information
Journal of Electrochemical Science and Technology / v.11, no.4, 2020 , pp. 392-398 More about this Journal
Abstract
Producing solar grade silicon using an inexpensive method is a key factor in lowering silicon solar cell costs; the direct electrochemical reduction of SiO2 in molten salt is one of the more promising candidates for manufacturing this silicon. In this study, SiO2 granules were electrochemically reduced in molten CaCl2 (850℃) using Ag-Si eutectic droplets that catalyze electrochemical reduction and purify the Si product. When Ag is used as the working electrode, the Ag-Si eutectic mixture is formed naturally during SiO2 reduction. However, since the Ag-Si eutectic droplets are liquid at 850℃, they are easily lost during the reduction process. To minimize the loss of liquid Ag-Si eutectic droplets, a cylindrical graphite container working electrode was introduced and Ag was added separately to the working electrode along with the SiO2 granules. The graphite container working electrode successfully prevented the loss of the Ag-Si eutectic droplets during reduction. As a result, the Ag-Si eutectic droplets acted as stable catalysts for the electrochemical reduction of SiO2, thereby producing one-dimensional Si rods through a mechanism similar to that of vapor-liquid-solid growth.
Keywords
$SiO_2$; Electrochemical Reduction; Ag-Si Eutectic; Molten Salt; $CaCl_2$;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 C. Battaglia, A. Cuevas and S. de Wolf, Energy Environ. Sci., 2016, 9, 1552-1576.   DOI
2 E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman and H. A. Atwater, Light Sci. Appl., 2013, 2(1), e45.   DOI
3 H. P. Mahabaduge, W. L. Rance, J. M. Burst, M. O. Reese, D. M. Meysing, C. A. Wolden, J. Li, J. D. Beach, T. A. Gessert, W. K. Metzger, S. Garner and T. M. Barnes, Appl. Phys. Lett., 2015, 106(13), 133501.   DOI
4 N.G. Park, Mater. Materials Today, 2015, 18(2), 65-72.   DOI
5 M. Aliaghayee, H.G. Fard and A. Zandi, J. Electrochem. Sci. Technol., 2016, 7(3), 218-227.   DOI
6 S. Nam, T.K. Vu, D.T. Le and I. Oh, J. Electrochem. Sci. Technol., 2018, 9(2), 118-125.   DOI
7 K. Hansen, Energy Strateg. Rev., 2019, 24, 68-82.   DOI
8 R. Knoblauch, D. Boing, W. L. Weingaertner, K. Wegener, F. Kuster and F. A. Xavier, Wear, 2018, 414, 50-58.   DOI
9 T. Nohira, K. Yasuda, and Y. Ito, Nat. Mater., 2003, 2(6), 397-401.   DOI
10 W. Xiao, X. Jin, Y. Deng, D. Wang, X. Hu and G. Z. Chen, ChemPhysChem, 2006, 7(8), 1750-1758.   DOI
11 W. Xiao, D. H. Wang, Chem. Soc. Rev., 2014, 43(10), 3215-3228.   DOI
12 X. Yang, K. Yasuda, T. Nohira, R. Hagiwara and T. Homma, J. Electrochem. Soc., 2014, 161(7), D3116   DOI
13 W. Xiao, X. B. Jin and G. Z. Chen, J. Mater. Chem. A, 2013, 1(35), 10243-10250.   DOI
14 S. K. Cho, F. R. F. Fan, A. J. Bard, Electrochim. Acta, 2012, 65, 57-63.   DOI
15 J. Zhao, H. Y. Yin, T. H. Lim, H. W. Xie, H. Y. Hsu, F. Forouzan, and A. J. Bard, J. Electrochem. Soc., 2016, 163(9), D506-D514.
16 S. K. Cho, F. R. F. Fan, A. J. Bard, Angew. Chem. Int. Ed., 2012, 124(51), 12912-12916.   DOI
17 B. Bokhonov and M. Korchagin, J. Alloy Compd., 2002, 335(1-2), 149-156.   DOI
18 M. Song, Y. T. Zhang, J. Chun, S. Y. Hu, M. Tang and D. S. Li, Nanoscale, 2020, 12(14), 7538-7543.   DOI
19 E. I. Givargizov, J. Cryst. Growth, 1975, 20-30.
20 S. Fang, H. Wang, J. Y. Yang, B. Yu and S. Lu, Faraday Discuss., 2016, 190, 433-449.   DOI
21 R. W. Olesinski, A. B. Gokhale and G. J. Abbaschian, Bulletin of Alloy Phase Diagrams, 1989, 10(6), 635-640.   DOI
22 W. Xiao, X. Jin, Y. Deng, D. Wang and G. Z. Chen, J. Electroanal. Chem., 2010, 639(1-2), 130-140.   DOI