Browse > Article
http://dx.doi.org/10.5229/JKES.2009.12.1.040

Spatially Selective Immobilization of Functional Materials onto Silicon Surfaces Using Electrochemical Method  

Park, Soo-Hyoun (Department of chemistry, University of Incheon)
Ah, Chil-Seong (Electronics and Telecommunications Research Institute)
Kim, Kyu-Won (Department of chemistry, University of Incheon)
Publication Information
Journal of the Korean Electrochemical Society / v.12, no.1, 2009 , pp. 40-46 More about this Journal
Abstract
We present a method for spatially selective immobilization of functional materials, such as proteins and nanoparticles, onto pre-activated silicon surfaces by electrochemical reaction. Carboxymethylbenzendiazonium (CMBD) cations, being adsorbable on silicon surfaces through electrochemically reductive deposition, is used as an anchor molecule to prepare the pre-activated silicon surfaces. It is demonstrated that the use of BD reaction is very efficient for the selective immobilization because the functional materials are immobilized exclusively onto the pre-adsorbed CMBD region. The method is applied to immobilize gold nanoparticles on the selected nanowire of the nanowire array.
Keywords
Electrochemistry; Benzenediazonium cation; Spatially selective immobilization; Silicon nanowires;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Shabani, A. Mak, W. H. Gerges, I. L. Cuccia, and M. F. Lawrence, Talanta, 70, 615 (2006)   DOI   ScienceOn
2 S. Griveau, D. Mercier, C. Vautrin-Ul, and A. Chausse, Electrochem. Commun. 9, 2768 (2007)   DOI   ScienceOn
3 R. D. Rohde, H. D. Agnew, W.-S. Yeo, R. C. Bailey, and J. R. Heath, J. Am. Chem. Soc., 128, 9518 (2006)   DOI   ScienceOn
4 A. Kim, C. S. Ah, H. Y. Yu, J.-H. Yang, I.-B. Baek, C.-G. Ahn, C. W. Park, M. S. Jun, and S. Lee, Appl. Phys. Lett. 91, 103901 (2007)   DOI   ScienceOn
5 S. Baranton, D. Belanger, J. Phys. Chem. B, 109, 24401 (2005)   DOI   ScienceOn
6 C. J. Barrelet, D. B. Robinson, J. Cheng, T. P. Hunt, C. F. Quate, and C. E. D. Chidsey, Langmuir 17, 3460 (2001)   DOI   ScienceOn
7 W. Sun, K. Jiao, S. Zhang, C. Zhang, and Z. Zhang, Anal. Chim. Acta, 434, 43 (2001)   DOI   ScienceOn
8 A. I. Gopalan, K.-P. Lee, K. M. Manesh, P. Santhosh, J. H. Kim and J. S. Kang, Talanta, 71, 1774 (2007)   DOI   ScienceOn
9 J. Spinke, M. Liley, F. J. Schmitt, H. J. Guder, L. Angermaier, and W. Knoll, J. Chem. Phys. 99, 7012 (1993)   DOI   ScienceOn
10 G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, Nat. Biotechnol. 23, 1294 (2005)   DOI   ScienceOn
11 M. N. Yousaf and M. Mrksich, J. Am. Chem. Soc., 121, 4286 (1999)   DOI   ScienceOn
12 K. Kim, H. Yang, S. Jon, E. Kim, and J. Kwak, J. Am. Chem. Soc., 126, 15368 (2004)   DOI   ScienceOn
13 K. Kim, M. Jang, H. Yang, E. Kim, Y. T. Kim, and J. Kwak, Langmuir, 20, 3821 (2004)   DOI   ScienceOn
14 Y. Bunimovich, G. Ge, R. Ries, K. Beverly, L. Hood, and J. Heath, Langmuir, 20, 10630 (2004)   DOI   ScienceOn
15 K. Kim, J. Hwang, I. Seo, T. H. Youn, and J. Kwak, Chem. Commun., 45, 4723 (2006)
16 S. Cosnier, Biosens. Bioelectron., 14, 443 (1999)   DOI   ScienceOn
17 M. Delamar, R. Hitmi, J. Pinson and J. -M. Saveant, J. Am. Chem. Soc. 114, 5883 (1992)   DOI