
Journal of the Korean Electrochemical Society

Vol. 17, No. 2, 2014,  119-123

http://dx.doi.org/10.5229/JKES.2014.17.2.119

− 119 −

Consideration on the Non-linearity of Warburg Impedance for Fourier 

Transform Electrochemical Impedance Spectroscopy

Byoung-Yong Chang*

Department of Chemistry, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 608-739, Korea

(Received March 28, 2014 : Accepted May 12, 2014)

Abstract : Here I report on how Fourier Transform Electrochemical Impedance Spectroscopy

(FTEIS) overcomes the potential-current linearity problem encountered in the impedance cal-

culation process. FTEIS was first invented to solve the time-related drawback of the conven-

tional impedance technique. The dramatic time reduction of FTEIS enabled the real-time

impedance measurement but brought about the linearity problem at the same time. While the

conventional method circumvents the problem using the steady-state made by a sufficiently long

measurement time, FTEIS cannot because of its real-time function. However, according to the

mathematical development reported in this article, the potential step used in FTEIS is proved

to avoid the linearity problem. During the step period, the potential and the current are lin-

earized by the electrochemical impedance. Also, Fourier transform of the differentiated potential

and current is proved to give the same result of the original ones. 
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1. Introduction

Electrochemical impedance spectroscopy (EIS) is

one of the most attracting electrochemical tech-

niques rising in the recent decades.1) The reason

is found in the fact that it senses minute changes

at the electrode/electrolyte interface which cannot

be acquired by other conventional techniques such

as chronoamperometry, chronopotentiometry, cyclic

voltammetry and so on.2-6) The nature of the

highly sensible power originates from the use of

ac waveforms to mixed electrochemical processes.

Generally speaking, ac waveforms are defined by

frequencies and magnitudes. When the signals are

applied to an electrochemical system, individual

electrochemical processes respond to their own

characteristic frequencies and change the magni-

tude of the frequency signals. Finally, even though

electrochemical processes are mixed over the fara-

daic reaction, they can be resolved according to

frequencies.

A drawback comes with the powerful resolution.

Impedance measurement takes a long time because

ac signals of various frequencies should be applied

at the steady-state of the electrochemical reaction.

This drawback hampers the real-time impedance

measurement of on-going electrochemical reactions

and comparative studies with other real-time meth-

ods such as cyclic voltammetry.7-10) A decade ago,

Park’s group published Fourier transform electro-

chemical impedance spectroscopy (FTEIS) to solve

the drawbacks of the conventional EIS.11) In that

method, dc signals were used to remove the disad-

vantage of using ac signals, however the same ac

information was obtained via Fourier transform of

the dc signals. It successfully made the real-time

measurement of EIS come true, and many applica-

tions were made later on.12-14)

Even though FTEIS was proved by experimental

results, a question still remains unsolved regarding

the calculation process.15) How does the transient

diffusion of redox molecules not hurt the linear

relationship between the potential and the current

when impedance is calculated? The following theo-

retical discussion will answer the question.
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2. Theoretical discussion

In an electrochemical system where O + e ↔ R,

the potential is described as a function of current

and concentrations of redox molecules changing

along the time. Hence, its time-derivative is

expressed as below.16)

(1)

The first term on the right side refers to the charge

transfer resistance, Rct, at the electrode/electrolyte

interface and the last two terms refer to the mass

transfer impedance by the diffusion of O and R spe-

cies. When the diffusion layer is semi-infinitely linear

on a planar electrode, CO(t) and CR(t), the surface

concentrations of O and R, are described by the fol-

lowing equations with CO* and CR* being the bulk

concentrations of each species.

(2)

In the conventional impedance method, upon the ac

potential perturbation, the current will be produced as

an ac waveform and described as i(t) = sin ωt. Keep-

ing it in mind, we calculate the integrals of eq (2).

(3)

As the solution of eq (3) is fluctuating with

time, the exact solution cannot be obtained as a

function of time. However, letting t go to infinity,

we can find the averaged value as the solution.

This case refers to the steady state of the electro-

chemical reaction.17) Then, dCO(t)/dt and dCR(t)/dt

are obtained as below.

(4)

Substitution of eq (4) into eq (1) leads to eq (5),

consequently the faradaic impedance, Zf, and War-

burg impedance, ZW, are expressed as eq (6) and eq

(7), respectively.16-18)

(5)

(6)

(7)

Eq (6) represents the faradaic impedance com-

posed of the charge transfer resistance, Rct, and the

mass transfer Warburg impedance, ZW, and shows

the 45o-linear line on the Nyquist plot along the

frequency.

Here I want to point out that eq (3) was solved

on the assumption of t →∞ and the steady state is

required. This requirement had prohibited impedance

measurement of the transition state, and real-time

impedance measurement had not been possible until

FTEIS was invented. FTEIS approached impedance

measurement from a completely different way.

While ac waveforms are used in the conventional

technique, dc waveforms are used and ac informa-

tion is obtained from the Fourier transform of the

dc signals. The most outstanding difference is that

the steady state is not required, which means that

impedance spectrum can be measured in real-time

in the transition state. Owing to that advantage,

mechanisms of complex electrochemical processes

were unveiled and real-time impedance sensors

were developed. In FTEIS, the impedance spec-

trum is obtained from the calculation of the signals

by the Ohm’s law.

(8)

Here, E(ω) and I(ω) are obtained from Fourier

transform of E(t) =∆E·U(t) and I(t), and have the

linear relationship. However, if we take into

account that the Warburg impedance by diffusion is

dependent on potential and the electrochemical E-I

curve is not linear, use of eq (8) may not be right

in the calculation. Even though the use of eq (8)

for FTEIS was not verified, FTEIS was proved to
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result in the same impedance spectrum of the con-

ventional EIS methods.12,19) The following mathe-

matical developments will explain how FTEIS

satisfies the linearity for using eq (8) without the

steady-state requirement.

When a potential step, E(t) = ∆E·U(t), is applied

on the electrochemical system, faradaic reactions are

activated and cause diffusion of the redox species,

which produce the electrochemical current. Delahay

theoretically derived the diffusion current as shown

by eq (9).20-21)

(9)

where kf and kb are the forward and backward

reaction constants having the conventional meanings.

Laplace transform of E(t) and i(t) yields 

and (10)

Application of eq (10) into eq (8) results in the

impedance.

(11)

Substitution of s = jω changes Laplace transform

to Fourier transform, and the Butler-Volmer rela-

tion sets , so that eq (11)

becomes Zf = Rct + RctH(1 − j)2−1/2
ω

−1/2. This equa-

tion has the same form of eq (6), Zf = Rct + ZW(1 −

j)2−1/2, and yields a new relation of ZW = H·Rct/ω
1/2.

Even though this equation is derived from the tran-

sient current, it is the same as eq (6) which is

derived from the steady state. At this point, we can

conclude that real-time measurement of electrochemi-

cal current can yield the same impedance spectrum

of the steady-state measurement.

We still have a question; are the potential and the

current linear? We can try to solve it using Warburg

impedance. When two potentials, E1(t) and E2(t), are

applied to the electrode, the currents, i1(t) and i2(t), are

produced, respectively. If the system is linear, another

potential, E3(t) = k1E1(t) + k2E2(t), should produce i3(t)

= k1i1(t) + k2i2(t) where k1 and k2 are arbitrary scalar.22)

Time integration of eq (1) with eq (2) and (6)

expresses the potential as a function of σ and i(t) as

shown below.

 

and (12)

For the third potential, E3(t) = k1E1(t) + k2E2(t),

(13)

Eq 13 satisfies i3(t) = k1i1(t) + k2i2(t) only when

σ1= σ2 as shown below, 

(14)

other than that, i3(t) ≠ k1i1(t) + k2i2(t). As σ is a function

of potential, the linearity of the potential-current is not

made when E(t) varies over time. In that case, applica-

tion of eq (8) is not possible. Nevertheless, experimen-

tal data have proved that eq (8) is possible to be used

in the FTEIS calculation. In FTEIS, the potential step

has a constant value, ∆E, which means σ fixed at a

certain value. Even though the potential and the current

are not linear over the varying E(t), it can be linear

upon a constant ∆E. To prove this statement, we start

again from eq (12) with Laplace transform.
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(15)

As the potential is constant by ∆E, σ is a constant.

Now, t-u is substituted as x for convenient calculation.

(16)

Eventually, eq (7) completes eq (16) to make

, which ensures the linear rela-

tionship between the potential and the current.

In the actual experiment, derivatives of E(t) and

i(t) are used in calculating impedance spectrum.

Theoretically, a Dirac δ(t) should be used in FTEIS

to provide a full ac spectrum. However, technical

problems in the real lab instrumentation restrict us

to using step functions instead. The last part of this

article is given to discuss on E'(t) and i'(t).

An important property of Laplace transform is

L[ f '(t)] = sL[ f (t)] − f (0). Thus, we can re-write the

last term of eq (16) as

(17)

and re-arrange it to

(18)

 

Because the last two terms are canceled out by

eq (9) and its derived equations, we write

(19)

and conclude that the differentiated potential and

current signals are also linearized by the same

impedance, which means that the original and the

first derivatives of potential and current signals can

undergo the FTEIS calculation process.

3. Conclusions

So far, I have discussed on the linearity issue

related to calculation of impedance; the potential

and the current are linearized by the electrochemi-

cal impedance even though the electrochemical cur-

rent is fundamentally non-linear with the electrode

potential. In the conventional EIS, this problem was

circumvented by applying the steady-state where the

measurement is made for a sufficiently long time.

However, FTEIS measures impedance spectrum in

real-time, so that the steady-state assumption cannot

be applied. Instead, the potential step applied on

the electrode clears the problem as it maintains a

certain value during the measurement period. Also,

the potential and the current Fourier transformed

from the differentiated potential and current signals

are confirmed to be linearized by the electrochemi-

cal impedance.
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