Browse > Article
http://dx.doi.org/10.5695/JKISE.2013.46.3.120

Damage Protection Technology by Potentiostatic Method of Cu Alloy Under Cavitation Environment in Seawater  

Kim, Seong-Jong (Division of Marine Engineering, Mokpo Maritime University)
Park, Jae-Cheul (Korean Register of Shipping)
Jang, Seok-Ki (Division of Marine Engineering, Mokpo Maritime University)
Publication Information
Journal of the Korean institute of surface engineering / v.46, no.3, 2013 , pp. 120-125 More about this Journal
Abstract
This investigation was to identify the electrochemical corrosion protection conditions to minimize the cavitation damage by generating hydrogen gas with the means of hydrogen overvoltage before the impact pressure of the cavity is transferred to the surface. The hybrid potentiostatic test method is designed to evaluate a complexed cavitation and electrochemical characteristic for ALBC3 alloy that is diverse and its broad applications fields in marine industry. The surface observation showed that neither the cavitation damage nor the electrochemical damage by the hydrogen gas generation occurred in the potential of -2.6 V under the cavitation environment. In the potentiostatic experiments under the cavitation environment, the cavities were reflected or cancelled out by the collision of the cavities with the hydrogen gas generated by the hydrogen overvoltage.
Keywords
Hydrogen overvoltage; Complexed cavitation and electrochemical characteristic; Hybrid potentiostatic test method; ALBC3 alloy; Marine industry;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Michler, J. Naumann, Int. J. Hydrogen Energy, 35 (2010) 821.   DOI   ScienceOn
2 T. Michler, Y. W. Lee, R. P. Gangloff, J. Naumann, Int. J. Hydrogen Energy, 34 (2009) 3201.   DOI   ScienceOn
3 S. M. Hong, M. K. Lee, G. H. Kim, C. K. Rhee, J. Kor. Inst. Surf. Eng., 39 (2006) 35.
4 S. J. Kim, S. J. Lee, Corros. Sci. Tech., 10 (2011) 101.
5 C. H. Tang, F. T. Cheng, H. C. Man, Surf. Coat. Technol., 200 (2006) 2602.   DOI   ScienceOn
6 S. S. Tan, J. A. Wharton, R. J. K. Wood, Wear, 258 (2005) 629.   DOI   ScienceOn
7 Y. Zheng, S. Luo, W. Ke, Wear, 262 (2007) 1308.   DOI   ScienceOn
8 N. Latona, P. Fetherston, A. Chen, K. Sridharan, R. A. Dodd, Corrosion, 57 (2001) 884.   DOI   ScienceOn
9 C. T. Kwok, F. T. Cheng, H. C. Man, Mater. Sci. Eng., A, 290 (2000) 55.   DOI   ScienceOn
10 A. Neville, T. Hodgkiess, Br. Corros. J., 32 (1997) 197.   DOI
11 H. Y. Ha, C. J. Park, H. S. Kwon, Corros. Sci., 49 (2007) 1266.   DOI   ScienceOn
12 H. I. Lee, M. S. Han, K. K. Baek, C. H. Lee, C. S. Shin, M. K. Chung, Corros. Sci. Tech., 7 (2008) 274.
13 Marcel Pourbaix, Atlas of Electrochemical Equilibria, NACE, (1974) 384.
14 G. Bregliozzia, A. D. Schinob, S. I. U. Ahmeda, J. M. Kennyb, H. Haefkea, Wear, 258 (2005) 503.   DOI   ScienceOn
15 M. H. Im, Corros. Sci. Tech., 10 (2011) 218.
16 A. M. Elhoud, N. C. Renton, W. F. Deans, Int. J. Hydrogen Energy, 35 (2010) 6455.   DOI   ScienceOn