• Title/Summary/Keyword: electrochemical discharge

Search Result 801, Processing Time 0.026 seconds

Preparation of Silicon-Carbon Composite via Magnesiothermic Reduction Method and Its Application to the Anode Material for Lithium Ion Battery (마그네슘열환원법을 이용한 실리콘-탄소 복합재 제조 및 리튬이차전지 음극재로의 이용)

  • Kim, Eudem;Kwon, Soon Hyung;Kim, Myung-Soo;Jung, Ji Chul
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.243-248
    • /
    • 2014
  • Silicon-carbon composite was prepared by the magnesiothermic reduction of mesoporous silica and subsequent impregnation with a carbon precursor. This was applied for use as an anode material for high-performance lithium-ion batteries. Well-ordered mesoporous silica(SBA-15) was employed as a starting material for the mesoporous silicon, and sucrose was used as a carbon source. It was found that complete removal of by-products ($Mg_2Si$ and $Mg_2SiO_4$) formed by side reactions of silica and magnesium during the magnesiothermic reduction, was a crucial factor for successful formation of mesoporous silicon. Successful formation of the silicon-carbon composite was well confirmed by appropriate characterization tools (e.g., $N_2$ adsorption-desorption, small-angle X-ray scattering, X-ray diffraction, and thermogravimetric analyses). A lithium-ion battery was fabricated using the prepared silicon-carbon composite as the anode, and lithium foil as the counter-electrode. Electrochemical analysis revealed that the silicon-carbon composite showed better cycling stability than graphite, when used as the anode in the lithium-ion battery. This improvement could be due to the fact that carbon efficiently suppressed the change in volume of the silicon material caused by the charge-discharge cycle. This indicates that silicon-carbon composite, prepared via the magnesiothermic reduction and impregnation methods, could be an efficient anode material for lithium ion batteries.

Fabrication and Characterization of Spherical Carbon-Coated Li3V2(PO4)3 Cathode Material by Hydrothermal Method with Reducing Agent

  • Moon, Jung-In;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.29 no.9
    • /
    • pp.519-524
    • /
    • 2019
  • Spherical $Li_3V_2(PO_4)_3$ (LVP) and carbon-coated LVP with a monoclinic phase for the cathode materials are synthesized by a hydrothermal method using $N_2H_4$ as the reducing agent and saccharose as the carbon source. The results show that single phase monoclinic LVP without impurity phases such as $LiV(P_2O_7)$, $Li(VO)(PO_4)$ and $Li_3(PO_4)$ can be obtained after calcination at $800^{\circ}C$ for 4 h. SEM and TEM images show that the particle sizes are $0.5{\sim}2{\mu}m$ and the thickness of the amorphous carbon layer is approximately 3~4 nm. CV curves for the test cell are recorded in the potential ranges of 3.0~4.3 V and 3.0~4.8 V at a scan rate of $0.01mV\;s^{-1}$ and at room temperature. At potentials between 3.0 and 4.8 V, the third $Li^+$ ions from the carbon-coated LVP can be completely extracted, at voltages close to 4.51 V. The carbon-coated LVP exhibits an initial specific discharge capacity of $118mAh\;g^{-1}$ in the voltage region of 3.0 to 4.3 V at a current rate of 0.2 C. The results indicate that the reducing agent and carbon source can affect the crystal structure and electrochemical properties of the cathode materials.

Development of Micro-Tubular Perovskite Cathode Catalyst with Bi-Functionality on ORR/OER for Metal-Air Battery Applications

  • Jeon, Yukwon;Kwon, Ohchan;Ji, Yunseong;Jeon, Ok Sung;Lee, Chanmin;Shul, Yong-Gun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.425-431
    • /
    • 2019
  • As rechargeable metal-air batteries will be ideal energy storage devices in the future, an active cathode electrocatalyst is required with bi-functionality on both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during discharge and charge, respectively. Here, a class of perovskite cathode catalyst with a micro-tubular structure has been developed by controlling bi-functionality from different Ru and Ni dopant ratios. A micro-tubular structure is achieved by the activated carbon fiber (ACF) templating method, which provides uniform size and shape. At the perovskite formula of $LaCrO_3$, the dual dopant system is successfully synthesized with a perfect incorporation into the single perovskite structure. The chemical oxidation states for each Ni and Ru also confirm the partial substitution to B-site of Cr without any changes in the major perovskite structure. From the electrochemical measurements, the micro-tubular feature reveals much more efficient catalytic activity on ORR and OER, comparing to the grain catalyst with same perovskite composition. By changing the Ru and Ni ratio, the $LaCr_{0.8}Ru_{0.1}Ni_{0.1}O_3$ micro-tubular catalyst exhibits great bi-functionality, especially on ORR, with low metal loading, which is comparable to the commercial catalyst of Pt and Ir. This advanced catalytic property on the micro-tubular structure and Ru/Ni synergy effect at the perovskite material may provide a new direction for the next-generation cathode catalyst in metal-air battery system.

Preparation of CoFe2O4 Nanoparticle Decorated on Electrospun Carbon Nanofiber Composite Electrodes for Supercapacitors (코발트 페라이트 나노입자/탄소 나노섬유 복합전극 제조 및 슈퍼커패시터 특성평가)

  • Hwang, Hyewon;Yuk, Seoyeon;Jung, Minsik;Lee, Dongju
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.470-477
    • /
    • 2021
  • Energy storage systems should address issues such as power fluctuations and rapid charge-discharge; to meet this requirement, CoFe2O4 (CFO) spinel nanoparticles with a suitable electrical conductivity and various redox states are synthesized and used as electrode materials for supercapacitors. In particular, CFO electrodes combined with carbon nanofibers (CNFs) can provide long-term cycling stability by fabricating binder-free three-dimensional electrodes. In this study, CFO-decorated CNFs are prepared by electrospinning and a low-cost hydrothermal method. The effects of heat treatment, such as the activation of CNFs (ACNFs) and calcination of CFO-decorated CNFs (C-CFO/ACNFs), are investigated. The C-CFO/ACNF electrode exhibits a high specific capacitance of 142.9 F/g at a scan rate of 5 mV/s and superior rate capability of 77.6% capacitance retention at a high scan rate of 500 mV/s. This electrode also achieves the lowest charge transfer resistance of 0.0063 Ω and excellent cycling stability (93.5% retention after 5,000 cycles) because of the improved ion conductivity by pathway formation and structural stability. The results of our work are expected to open a new route for manufacturing hybrid capacitor electrodes containing the C-CFO/ACNF electrode that can be easily prepared with a low-cost and simple process with enhanced electrochemical performance.

Improved Low-temperature Performance of Lithium Secondary Battery Using Energy Circulating Operation (리튬 이차전지의 저온 성능 개선을 위한 에너지 순환 작동 연구)

  • Yoon, Hyun-Ki;Ha, Sang-Hyeon;Lee, Jaein
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.421-428
    • /
    • 2021
  • Lithium-ion secondary batteries exhibit advantageous characteristics such as high voltage, high energy density, and long life, allowing them to be widely used in both military and daily life. However, the lithium-ion secondary battery does have its limitation; for example, the output power and capacity are readily decreased due to the increased internal impedance during discharging at a lower temperature (-32℃, military requirement). Also, during charging at a lower temperature, lithium dendrite growth is accelerated at the anode, thereby decreasing the battery capacity and life as well. This paper describes a study that involves increasing the internal temperature of lithium-ion secondary battery by energy circulation operation in a low-temperature environment. The energy circulation operation allows the lithium-ion secondary battery to alternately charge and discharge, while the internal resistance of lithium-ion battery acts as a heating element to raise its own temperature. Therefore, the energy circulation operation method and device were newly designed based on the electrochemical impedance spectroscopy of the lithium-ion secondary battery to mediate the battery performance at a lower temperature. Through the energy circulation operation of lithium ion secondary battery, as a result of the heat generated from internal resistance in an extremely low-temperature environment, the temperature of the lithium-ion secondary battery increased by more than 20℃ within 10 minutes and showed a 75% discharging capacity compared with that at room temperature.

Performances of Li-Ion Batteries Using LiNi1-x-yCoxMnyO2 as Cathode Active Materials in Frequency Regulation Application for Power Systems

  • Choi, Jin Hyeok;Kwon, Soon-Jong;Lim, Jungho;Lim, Ji-Hun;Lee, Sung-Eun;Park, Kwangyong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.461-466
    • /
    • 2020
  • There are many application fields of electrical energy storage such as load shifting, integration with renewables, frequency or voltage supports, and so on. Especially, the frequency regulation is needed to stabilize the electric power system, and there have to be more than 1 GW as power reserve in Korea. Ni-rich layered oxide cathode materials have been investigated as a cathode material for Li-ion batteries because of their higher discharge capacity and lower cost than lithium cobalt oxide. Nonetheless, most of them have been investigated using small coin cells, and therefore, there is a limit to understand the deterioration mode of Ni-rich layered oxides in commercial high energy Li-ion batteries. In this paper, the pouch-type 20 Ah-scale Li-ion full cells are fabricated using Ni-rich layered oxides as a cathode and graphite as an anode. Above all, two test conditions for the application of frequency regulation were established in order to examine the performances of cells. Then, the electrochemical performances of two types of Ni-rich layered oxides are compared, and the long-term performance and degradation mode of the cell using cathode material with high nickel contents among them were investigated in the frequency regulation conditions.

Stabilization of High Nickel Cathode Materials with Core-Shell Structure via Co-precipitation Method (공침법을 통하여 합성된 코어-쉘 구조를 가지는 하이 니켈 양극 소재 안정화)

  • Kim, Minjeong;Hong, Soonhyun;Jeon, Heongkwon;Koo, Jahun;Lee, Heesang;Choi, Gyuseok;Kim, Chunjoong
    • Korean Journal of Materials Research
    • /
    • v.32 no.4
    • /
    • pp.216-222
    • /
    • 2022
  • The capacity of high nickel Li(NixCoyMn1-x-y)O2 (NCM, x ≥ 0.8) cathodes is known to rapidly decline, a serious problem that needs to be solved in a timely manner. It was reported that cathode materials with the {010} plane exposed toward the outside, i.e., a radial structure, can provide facile Li+ diffusion paths and stress buffer during repeated cycles. In addition, cathodes with a core-shell composition gradient are of great interest. For example, a stable surface structure can be achieved using relatively low nickel content on the surface. In this study, precursors of the high-nickel NCM were synthesized by coprecipitation in ambient atmosphere. Then, a transition metal solution for coprecipitation was replaced with a low nickel content and the coprecipitation reaction proceeded for the desired time. The electrochemical analysis of the core-shell cathode showed a capacity retention of 94 % after 100 cycles, compared to the initial discharge capacity of 184.74 mA h/g. The rate capability test also confirmed that the core-shell cathode had enhanced kinetics during charging and discharging at 1 A/g.

Biomass-Derived Three-Dimensionally Connected Hierarchical Porous Carbon Framework for Long-Life Lithium-Sulfur Batteries

  • Liu, Ying;Lee, Dong Jun;Lee, Younki;Raghavan, Prasanth;Yang, Rong;Ramawati, Fitria;Ahn, Jou-Hyeon
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.97-102
    • /
    • 2022
  • Lithium sulfur (Li-S) batteries have attracted considerable attention as a promising candidate for next-generation power sources due to their high theoretical energy density, low cost, and eco-friendliness. However, the poor electrical conductivity of sulfur and its insoluble discharging products (Li2S2/Li2S), large volume changes, severe self-discharge, and dissolution of lithium polysulfide intermediates result in rapid capacity fading, low Coulombic efficiency, and safety risks, hindering Li-S battery commercial development. In this study, a three-dimensionally (3D) connected hierarchical porous carbon framework (HPCF) derived from waste sunflower seed shells was synthesized as a sulfur host for Li-S batteries via a chemical activation method. The natural 3D connected structure of the HPCF, originating from the raw material, can effectively enhance the conductivity and accessibility of the electrolyte, accelerating the Li+/electron transfer. Additionally, the generated micropores of the HPCF, originated from the chemical activation process, can prevent polysulfide dissolution due to the limited space, thereby improving the electrochemical performance and cycling stability. The HPCF/S cell shows a superior capacity retention of 540 mA h g-1 after 70 cycles at 0.1 C, and an excellent cycling stability at 2 C for 700 cycles. This study provides a potential biomass-derived material for low-cost long-life Li-S batteries.

A study on the synthesis of a cathode active material precursor from a waste lithium secondary battery (폐리튬이차전지 스크랩 재활용을 통한 양극활물질 전구체 합성 연구)

  • Kim, BoRam;Kim, Dae-Weon;Kim, Tae-heon;Lee, Jae-Won;Jung, Hang-chul;Han, Deokhyun;Jung, Soo-Hoon;Yang, Dae-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.2
    • /
    • pp.61-67
    • /
    • 2022
  • A metal salt solution was prepared from valuable metals (Ni, Co, Mn) recovered from a scrap of waste lithium secondary batteries, and an NCM811 precursor was synthesized from the solution. The effect on precursor formation according to reaction time was confirmed by SEM, PSA, and ICP analysis. Based on the analysis results, the electrochemical properties of the synthesized NCM811 precursor and the commercial NCM811 precursor were investigated. The Galvano charge-discharge cycle, rate performance, and Cycle performance were compared, and as a result, there was no significant difference from commercial precursors.

Three-dimensional porous films consisting of copper@cobalt oxide core-shell dendrites for high-capacity lithium secondary batteries (리튬이차전지용 고용량 음극을 위한 구리@코발트산화물 코어-쉘 수지상 기반 3차원 다공성 박막)

  • So-Young Joo;Yunju Choi;Woo-Sung Choi;Heon-Cheol Shin
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.1
    • /
    • pp.104-114
    • /
    • 2023
  • Three dimensional (3D) porous structures consisting of Cu@CoO core-shell-type nano-dendrites were synthesized and tested as the anode materials in lithium secondary batteries. For this purpose, first, the 3D porous films comprising Cu@Co core-shell-type nano-dendrites with various thicknesses were fabricated through the electrochemical co-deposition of Cu and Co. Then the Co shells were selectively anodized to form Co hydroxides, which was finally dehydrated to get Cu@CoO nanodendrites. The resulting electrodes exhibited very high reversible specific capacity almost 1.4~2.4 times the theoretical capacity of commercial graphite, and excellent capacity retention (~90%@50th cycle) as compared with those of the existing transition metal oxides. From the analysis of the cumulative irreversible capacity and morphology change during charge/discharge cycling, it proved that the excellent capacity retention was attributed to the unique structural feature of our core-shell structure where only the thin CoO shell participates in the lithium storage. In addition, our electrodes showed a superb rate performance (70.5%@10.8 C-rate), most likely due to the open porous structure of 3D films, large surface area thanks to the dendritic structure, and fast electron transport through Cu core network.