Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.9.519

Fabrication and Characterization of Spherical Carbon-Coated Li3V2(PO4)3 Cathode Material by Hydrothermal Method with Reducing Agent  

Moon, Jung-In (Department of Materials Engineering, Graduate School of PaiChai University)
Song, Jeong-Hwan (Department of Materials Science and Engineering, PaiChai University)
Publication Information
Korean Journal of Materials Research / v.29, no.9, 2019 , pp. 519-524 More about this Journal
Abstract
Spherical $Li_3V_2(PO_4)_3$ (LVP) and carbon-coated LVP with a monoclinic phase for the cathode materials are synthesized by a hydrothermal method using $N_2H_4$ as the reducing agent and saccharose as the carbon source. The results show that single phase monoclinic LVP without impurity phases such as $LiV(P_2O_7)$, $Li(VO)(PO_4)$ and $Li_3(PO_4)$ can be obtained after calcination at $800^{\circ}C$ for 4 h. SEM and TEM images show that the particle sizes are $0.5{\sim}2{\mu}m$ and the thickness of the amorphous carbon layer is approximately 3~4 nm. CV curves for the test cell are recorded in the potential ranges of 3.0~4.3 V and 3.0~4.8 V at a scan rate of $0.01mV\;s^{-1}$ and at room temperature. At potentials between 3.0 and 4.8 V, the third $Li^+$ ions from the carbon-coated LVP can be completely extracted, at voltages close to 4.51 V. The carbon-coated LVP exhibits an initial specific discharge capacity of $118mAh\;g^{-1}$ in the voltage region of 3.0 to 4.3 V at a current rate of 0.2 C. The results indicate that the reducing agent and carbon source can affect the crystal structure and electrochemical properties of the cathode materials.
Keywords
$Li_3V_2(PO_4)_3$; hydrothermal; $N_2H_4$; saccharose; cathode material;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Guyomard and J.M. Tarascon, J. Electrochem. Soc., 139, 937 (1992).   DOI
2 C. D. W. Jones, E. Rossen and J. R. Dhan, Solid State Ionics, 68, 65 (1994).   DOI
3 H. Y. Xu, S. Xie, N. Ding, B. L. Liu, Y. Shang and C. H. Chen, Electrochim. Acta, 51, 4352 (2006).   DOI
4 K. Ozawa, Solid State Ionics, 69, 212 (1994).   DOI
5 J. Gaubicher, C. Wurm, G. Goward, C. Masquelier and L. Nazar, Chem. Mater., 12, 3240 (2000).   DOI
6 S. C. Yin, H. Grondey, P. Strobel, H. Huang and L. F. Nazar, J. Am. Chem. Soc., 125, 326 (2003).   DOI
7 S. C. Yin, H. Grondey, P. Strobel, M. Anne and L. F. Nazar, J. Am. Chem. Soc., 125, 10402 (2003).   DOI
8 D. Morgan, G. Ceder, M. Y. Saidi, J. Barker, J. Swoyer and H. Huang and G. Adamson, Chem. Mater., 14, 4684 (2002).   DOI
9 M. Y. Saidi, J. Barker, H. Huang, J. L. Swoyer and G. Adamson, J. Power Sources, 119-121, 266 (2003).   DOI
10 Q. Kuang, Y. M. Zhao, X. N. An, J. M. Liu, Y. Z. Dong and L. Chen, Electrochim. Acta, 55, 1575 (2010).   DOI
11 J. S. Huang, L. Yang, K. Y. Liu and Y. F. Tang, J. Power Sources, 195, 5013 (2010).   DOI
12 C. Deng, S. Zhang, S. Y. Yang, Y. Gao, B. Wu, L. Ma, B. L. Fu, Q. Wu and F. L. Liu, J. Phys. Chem. C, 115, 15048 (2011).   DOI
13 Yu. G. Mateyshina and N. F. Uvarov, J. Power Sources, 196, 1494 (2011).   DOI
14 M. M. Ren, Z. Zhou, Y. Z. Li, X. P. Gao and J. Yan, J. Power Sources, 162, 1357 (2006).   DOI
15 D. Ai, K. Liu, Z. Lu, M. Zou, D. Zeng and J. Ma, Electrochim. Acta, 56, 2823 (2011).   DOI
16 H. Huang, S. C. Yin, T. Kerr, N. Taylor and L. F. Nazar, Adv. Mater., 14, 1525 (2002).   DOI
17 Q. Q. Chen, J. M. Wang, Z. Tang, W. C. He, H. B. Shao and J. Q. Zhang, Electrochim. Acta, 52, 5251 (2007).   DOI
18 A. P. Tang, X. Y. Wang and Z. M. Liu, Mater. Lett., 62, 1646 (2008).   DOI
19 X. C. Zhou, Y. M. Liu and Y. L. Guo, Solid State Commun., 146, 261 (2008).   DOI
20 X. J. Zhu, Y. X. Liu, L. M. Geng, L. B. Chen, H. X. Liu and M. H. Cao, Solid State Ionics, 179, 1679 (2008).   DOI
21 X. J. Zhu, Y. X. Liu, L. M. Geng and L. B. Chen, J. Power Sources, 184, 578 (2008).   DOI
22 C. Sun, S. Rajasekhara, Y. Dong and J. B. Goodenough, ACS Appl. Mater. Interfaces, 3, 3772 (2011).   DOI
23 Z. Chen, C. Dai, G. Wu, M. Nelson, X. Hu, R. Zhang, J. Liu and J. Xia, Electrochim. Acta, 55, 8595 (2010).   DOI
24 J. S. Huang, L. Yang and K. Y. Liu, Mater. Lett., 66, 196 (2012).   DOI
25 M. M. Ren, Z. Zhou, X. P. Gao, W. X. Peng and J. P. Wei, J. Phys. Chem. C, 112, 5689 (2008).   DOI